You can learn more about HamXposition and our activities there at the HamXpostion website.
Ham Bootcamp
A First HF Contact at Ham Bootcamp
We have created a program that we call Ham Bootcamp. Bootcamp to helps recently licensed and upgraded hams to get on the air. We are making this program available to up to 100 HamXpostion attendees on a first-come-first-served basis.
Our Bootcamp program will run from 9 am to noon on Saturday, September 7th in the Federal Room. Bootcamp will feature tracks for both Technician and General class license holders. It is also a great place for folks who are not yet licensed to learn more about Amateur Radio and how to get on the air.
Our Bootcamp program will include:
How to make a contact and join a repeater net
Putting together an HF station
Radio, antenna, and feed line choices
Getting started with FT8 and digital modes
Exchanging QSL cards
Learning Morse code
Tips on upgrading
Introduction to ham radio kit building
Handheld radio programming tutorials
Ham Bootcamp is free. Participants will receive discount certificates for a kit build at the show and for purchase of Ham Radio Gear from Ham Radio Outlet.
I wanted to share our plans for several hands-on activities at HamXposition @ Boxboro in September. We hope that Ham Bootcamp will be of particular interest to folks getting into Amateur Radio. You can learn more about Ham Bootcamp and all of our planned activities via the link above. We hope to see some of our readers at HamXpostion next month!
This article explains how to put a Sat Tracker together.
The information and software described here are provided on an “as is” basis without support, warranty, or any assumption of liability related to assembly or use. You may use information and software image here only at your own risk and doing so releases the author and Green Heron Engineering from any liability for damages either direct or indirect which might occur in connection with using this material. No warranty or liability either explicit or implicit is provided by either AB1OC or Green Heron Engineering.
Now that we have that out-of-the-way, here are the components that you need to build your own Sat Tracker:
The Sat Tracker image includes a display driver for the specific touch display listed above and will most likely NOT WORK with any other touch display. You will also need a Green Heron RT-21 Az/El or a pair of Green Heron RT-21 single rotator controllers from Green Heron Engineering that are properly configured for your rotators.
If you have not worked with the Raspberry Pi before, it’s a good idea to begin by installing NOOBS on your SD card and getting your Raspberry Pi to boot with a USB Keyboard, USB Mouse, and an HDMI display attached. This will give you a chance to get familiar with formatting and loading your SD card with the Raspbian build of the Debian OS for the Raspberry Pi. I’d encourage you to boot up the OS and play with it some to get familiar with the OS environment before building your Sat Tracker.
Etcher Writing Raspberry Pi SD Card Image
The first step in building your Sat Tracker is to put together the hardware and write the image to your SD Card. Use the enclosed instructions or search the web to find information on how to do each of these steps:
Install the Heat Sinks on the Raspberry Pi 3 B+ Motherboard. Make sure your chipset heat sink will clear the back of the case. If it won’t, it’s fine to just install the CPU Heatsink.
Assemble your case to the point where it is built up to support the touch display
Carefully install your touch display on the Raspberry Pi Motherboard
Install the remaining pieces of your case including the nylon screws and nuts which hold the case parts together
Download the SD Card image from the link below, unzip it, and load the image onto your SD card using Etcher
Install your SD card in the slot on your Raspberry Pi Motherboard
Connect your Raspberry Pi to the outside world as follows:
Connect Two USB cables – one end to the Elevation and Azimuth ports on your Green Heron Engineering RT-21 Controller(s) and the other ends to two of the USB connections on the Raspberry Pi
Connect a wired Ethernet Cable to your Raspberry Pi via a common Ethernet Hub or Switch with a PC or Mac that has VNC Viewer Installed. You will need a DHCP server running on the same network to supply your Raspberry Pi with an IP address when it boots. Your router most likely provides a DHCP function.
Connect your USB power supply to the Raspberry Pi Motherboard and power it up
Your Sat Tracker should boot up to the desktop with GH Tracker V1.24 running. The touch display works fine for using GH Tracker but its a bit small for configuring things. To make the configuration steps easier, the image comes up running VNC Server. I like to use VNC Viewer on my PC to connect to the Sat Tracker using VNC to perform the steps that follow. Note that both the Raspberry Pi and your PC must be on the same sub-network for the VNC connection to work. I’ve also included the following commands in the Sat Tracker image which can be run from the Raspberry Pi terminal window to make the configuration process easier:
$ setdisp hdmi # Disables the TFT display & uses the HDMI interface
$ setdisp tft # Disables the HDMI interface & uses the TFT display
$ reboot # Reboots the Raspberry Pi causing
# the latest display command to take effect
If you select the HDMI interface, you will find that VNC Viewer produces a larger window enabling you to perform the following configuration steps:
First, you need to determine the IP address of your Sat Tracker. This can be done via your DHCP server or by touching the network icon (up and down arrows) at the top of the display on the Sat Tracker.
Use VNC Viewer on your PC or Mac to connect to the IP address of your Raspberry Pi. The default password is “raspberry“.
Once you are connected, open a terminal dialog on the Sat Tracker, set your display to hdmi mode via the command shown above, and reboot your Sat Tracker.
Reconnect VNC Viewer to your Sat Tracker and click on the Raspberry button (Start Menu Button) at the top left of the screen, select Preferences, and run Raspberry Pi Configuration. Select Expand Filesystem from the System Tab. This will expand the filesystem to use all of the available space on your SD Card. You can also change the system name of your Sat Tracker and your login password if you wish. When you are done making these changes, reboot your Sat Tracker.
Reconnect to your Sat Tracker via VNC Viewer and select Setup-> Rotator Configuration from the menu in the GH Tracker App. Select the TTY devices (i.e. COM Ports) associated with the Azimuthand Elevationconnections to your RT-21 Controller(s) via the two dropdown boxes. You can also configure the operational parameters for GH Tracker at this time. The ones that I use with our Alfa-Spid Az/El Rotators are shown below.
GHE RT-21 Az/El Controller Settings for Alfa-Spid Rotator
Setting
Azimuth
Elevation
Notes
Park Heading
0 degrees
90 degrees
Set via MacDoppler. Minimize wind loading and coupling to antennas below. Also enables water drainage from cross-boom tubes.
Offset
180 degrees
0 degrees
Azimuth dead spot is South. Elevation headings are from 0 to 180 degrees.
Delays
6 sec
6 sec
Minimize relay operation during computer tracking
Min Speed
2
3
Creates smooth start and stop for large array
Max Speed
10
10
Makes large movements relatively quick
CCW Limit
180 degrees
355 degrees
CCW and CW limits ensures predictable Azimuth heading for range around 180 degrees. Elevation limits permit 0 to 180 degree operation. Elevation limits shown can only be set via GHE configuration app.
CW Limit
179 degrees
180 degrees
Option
SPID
SPID
Alfa-Spid Az/El Rotator
Divide Hi
360
360
Rotator has 1 degree pointing accuracy
Divide Lo
360
360
Knob Time
40
40
Default setting
Mode
NORMAL
NORMAL
Default setting
Ramp
6
6
Creates smooth start and stop for large array
Bright
2
2
Easy to read in shack
Configure the source of tracking data to be MacDoppler (UDP) from the GH TrackerSourceMenu. We use UDP Broadcasts with MacDoppler running on the same Mac with VNC Viewer to run our rotator. Finally, press the Press to start tracking button on GH Tracker and run MacDopplerwith UDP Broadcast on and Rotators Enabled to start tracking.
MacDoppler Tracking AO-91
Once you are satisfied with the operation of your Sat Tracker, use VNC Viewer to access the terminal window on your Sat Tracker one last time, set your display to TFT, and reboot.
The most common problems that you’ll run into are communications between your Sat Tracker and your Green Heron Engineering RT-21 Controller(s). If the Azimuth and Elevation numbers are reversed in GH Tracker, simply switch the TTY devices via the Setup Menu in GH Tracker. Also, note that it’s important to have your RT-21 Controller(s) on and full initialized BEFOREbooting up your Sat Tracker.
Most communications problems can be resolved by initializing your tracking system via the following steps in order:
Start with your RT-21 Controller(s) and you Sat Tracker powered down. Also, shutdown MacDoppleron your Mac.
Power up your RT-21 Controller(s) and let the initializations fully complete.
Power up your Sat Trackerand let it fully come up before enabling tracking in GH Tracker.
Finally, startup MacDoppler, make sure it is configured to use UDP Broadcasts for Rotator Control and make sure that Rotators Enabled is checked.
The VNC Server on the Sat Tracker will sometimes fail to initialize on boot. If this happens, just reboot your Sat Tracker and the VNC Server should initialize and enable VNC access.
I hope you have fun building and using your own Sat Tracker.
You can see more about what we are planning via the link above. Activities will include multiple GOTA Stations, a Kit Build, a Fox Hunt, Morse Code, and other hands-on activities. We will also be operating a Special Event Station as N1T.
Anita and I have been working to grow the Amateur Radio Service through our work at the Nashua Area Radio Society. The Nashua Area Radio Society is a 501c(3) public charity whose mission is to:
Encourage and help people to become licensed and active in the Amateur Radio Service
Spark Interest among Young People in STEM Education and Careers through Ham Radio
Provide training and mentoring to enable our members to improve their technical and operating skills and to be prepared to assist in times of emergency
Sponsor on-air operating activities so that our members may practice and fully develop their operating skills and have fun with Ham Radio!
Students and Teachers Ready To Launch Their High-Altitude Balloon
The Nashua Area Radio Society has created many programs designed to provide STEM learning experiences and training through Amateur Radio. Some of these include:
Emergency Communications Training through our Field Day and other activities
Supporting Local Schools with ARISS Crew Contacts and other Amateur Radio activities
To carry out our mission, we have formed close relationships with several schools. This helps us develop and deliver effective, high-quality programs that bring learning through Amateur Radio to young people. You can read more about what we’re doing via the link at the top of the page.
We provide many of these services either free of charge or at a very modest cost. We count on the generosity of our members, friends, and the Amateur Radio community to raise funds to support our work.
We hope that our readers will consider supporting our work at the Nashua Area Radio Society by using Amazon Smile and designating us as your favorite charity and/or by making a donation to our current fundraising campaign (click on the badge below).
On behalf of the many young people and others that we help, thank you very much for your interest and support. We will continue to work hard to provide learning opportunities for young people through Amateur Radio and to continue to make the Amateur Radio Service the best it can be to benefit everyone.
Quite a few Nashua Area Radio Society members have been working on a display to get young people and potential new Hams interested in Amateur Radio. Our display will be part of the New England Amateur Radio Convention in Boxboro, MA on September 8th and 9th. We are also planning a similar display for NEAR-Fest at Deerfield Fairgrounds, NH later in the fall. You can see more about our planned display and the associated hands-on activities via the following link.
I want to share some information about an Amateur Radio event that we will be doing at the Boxboro, MA Ham Radio Convention in September. Our display and hands-on activities provide an introduction to Amateur Radio for young people and include information and a chance to try Amateur Radio activities such as:
You can read more about our plans for the event via the link above.
Morse Trainer Kit
We’ve been working with Steve Elliot, K1EL to develop an inexpensive kit building project to include as part of our displays. We will be including a new kit building activity in as part of our display. Builders can purchase the Morse Trainer Kit shown above for $20 and build it at the show. We will provide soldering equipment and kit building mentors to help builders complete their kit. The package includes batteries and a printed manual. We will have these kits available for walk-up purchase at the show on both Saturday and Sunday.
I am also planning to provide forum presentation on the following topics on Saturday at Boxboro:
Creating Successful Youth Outreach Projects
Portable Satellite Station Design, Operation, and Planning for an upcoming ISS Crew Contact
STEM Learning for Young People via High Altitude Balloons Carrying Amateur Radio
I hope to see folks who follow our Blog at the New England at the Boxboro Convention. If you can make it, stop by our display or visit us in the forums and say “hello”.
The first transport of the new 3.0 station antenna system turned out to be simple. The booms and counterweights of the new antenna system are easily separated via the removal of a few bolts located at the cross-boom. This allowed the antennas feed-points, rotator loops and polarity switching connections to be removed and transported as complete assemblies. The separation of the longer-boom antennas into two sections also made transporting the antennas easier and made the antenna elements less prone to bending in transport. Setup and cabling of the new 3.0 antenna system as the class site was quick and simple.
The opportunities to make contacts during our Tech Class were limited but the new system performed well with one exception. We saw a higher than expected SWR readings on the 70cm yagi during transmit. We immediately suspected problems with one of the N connectors that were installed during the construction of the new system (component testing during assembly showed the SWR readings on the 70cm side of the system to be in spec.).
Portable Satellite Station 3.0 Antenna System
After the class, we set up the 3.0 system again at our QTH. Transport and re-assembly of the new system are somewhat easier and faster than our 2.0 portable station antenna setup is.
Satellite Antenna System 3.0 Connections
The 3.0 antenna system uses a similar connector bulkhead approach that we used previously. The rotator controls are handled via a single, 8-conductor cable and we have a new connection for the polarity switching controls on the 3.0 system yagis.
Rotator Loop Coax Retention System
We have had some problems with the connections between the preamplifiers mounted at the antennas and the rotator loops which connect the antennas to them. This problem caused several failures in the associated N-connectors on the 2.0 portable antenna system so we fabricated a simple arrangement to prevent the rotation of the antennas from turning the coax inside the N-connectors and causing these failures.
70cm Antenna and Feedline SWR in the Satellite Sub-Band
Some isolation tests were performed on each cabling element of the 70cm side of the 3.0 antenna system and this resulted in the location of an improperly installed N-connector. The faulty connector was easily replaced and this corrected the SWR readings on the 70cm side of the antenna system. The image above shows the SWR readings for the 70cm antenna after the faulty connector was replaced. We checked the SWR performance with the 70cm yagi set for both Left-Hand and Right-Hand Circular Polarization and we saw good results in both configurations.
2m Antenna and Feedline SWR in the Satellite Sub-Band
We also re-checked the SWR performance of the 2m side of the antenna system with the 2m yagi in both polarity settings and it looked good as well.
Portable Satellite Antenna 3.0 Az-El Rotator
The 3.0 antenna system uses an Alfa-Spid rotator. The Alfa-Spid can handle the additional weight of the larger yagis and has a more precise pointing ability (1° accuracy) which is helpful given the tighter patterns of the larger, 3.0 yagis.
70cm Yagi Switchable Polarity Feedpoint
The new yagis in the 3.0 antenna system have feed point arrangements which allow the polarity of the yagis to be switched between Left-Hand Circular Polarity (LHCP) and Right-Hand Circular Polarity (RHCP). These antennas used a relay arrangement at the feed-points that flip the polarity of one plane of the yagis by 180° which in turn changes the polarity of the antennas between LHCP and RHCP.
Portable Satellite Station 3.0 Computer Control via MacDoppler
We are continuing to use the excellent MacDoppler software to control the 3.0 station. MacDoppler provides tracking controls for the antennas and doppler correction for the Icom-9100 transceivers uplink and downlink VFOs.
Satellite 3.0 Station Control Details
The image above shows a closer view of the 3.0 station controls. The box in the middle-left with four LEDs and the knob is used to select one of four polarity configurations for the 2m and 70cm yagis – RHCP/RHCP, LHCP/RHCP, RHCP/LHCP, or LHCP/LHCP. Just to the right in the middle stack is our homebrewed PTT Router which expands and improves the PTT sequencing performance of the station. Our station also uses a WaveNode WN-2 for SWR and power monitoring.
So how does the new 3.0 station perform? The new antennas have a tighter pattern requiring careful pointing calibration of the rotators during setup. This is easy to do with the Alfa-Spid rotator. The new antennas have noticeable more gain as compared to the LEO pack used on the 2.0 station. We are also surprised to see how much difference the polarity switching capability makes in certain situations – sometimes as much as two S units (12 dB) in certain situations. The combination of the new antennas and selection of the best polarity combination allows solid operation on many satellites passes with as little as 2 watts of uplink power. We have made a little over 50 QSOs on the new 3.0 station so far and it works great! For more information on the Portable 3.0 Station as well as the 2.0 and 1.0 stations that we’ve built – see the links below:
Our Satellite Station 2.0 antenna system uses a pair of Advanced Receiver Research Remote preamplifiers at the antennas to boost weak signals. These preamps have RF sensing and switching to protect them during transit. While this system works well; we are always concerned about the impact of the RF power affecting the long-term reliability of these devices and the associated radio equipment.
M2 Antenna Systems S3 Sequencers
Our Satellite Station 2.0 uses a pair of M2 Antenna Systems S3 Sequencers to control the preamps remotely. For U/V and V/U mode satellites, it’s a simple matter to turn off the uplink band preamp to protect it against RF during transmit. The problem with this approach comes when working satellites and the International Space Station in simplex (single band) modes. In these situations, we need a solution which keys the sequencers externally so that the sequencers can properly control the changeover of the preamps from receive to transmit mode before keying our radio (an Icom IC-9100). We also wanted a solution which could also allow the radio initiate the keying of the sequencers for CW break-in keying and digital modes.
PTT Router
Our solution was to design and build a simple Push-To-Talk (PTT) router. This device allows an external source such as a footswitch or a trigger switch to initiate the keying. The design also includes indicators which confirm that the keying sequence has completed.
PTT Router Schematic Diagram
Our first step was to create a simple design which allowed for either an external switch or the radio to initiate keying. The PTT source switch (S1) selects the keying source and uses the Hsend (2m key) and Vsend (70cm/1.2 GH key) lines on the Icom IC-9100 accessory jack as either the means to key the radio or the means to detect that the radio has initiated a transmit keying sequence. A second switch (S2) selects which VFO is keyed when the keying source switch (S1) is in External mode. Finally, indicators for power and keying complete were added.
Rear Panel Connectors
A small enclosure was used to house the switches, indicators, and the connections to the rest of our Satellite Station. The image above shows the rear-panel connections to external PTT sources, the S3 Sequencers, the IC-9100 Radio, and a 12 Vdc station power source.
PTT Router Internal View
A pair of terminal strips were mounted inside the enclosure to make connecting all of the components easier. The wiring is pretty dense around the front and rear panels so connections were insulated with heat shrink tubing. A small PCB could easily be created to make replicating the prototype easier should we decide to build more copies of the design.
Satellite Station 3.0 Controls
Our new PTT router was easy to integrate into our Satellite Station 3.0 setup. Integration required some custom cables to be made to connect our PTT router to the sequencers and to the accessory jack of the radio. With the integration completed, we are now able to properly sequence the control of the preamps and the radio in all modes of operation. Here are some more articles which include more about our portable satellite stations –
I recently wrote a blog article about the DX Alarm Clock software – here is Part 2 of the Series on how I built the hardware for the DX Alarm Clock.
DX Alarm Clock Hardware Components
The DX Alarm Clock is based on a Raspberry Pi 3 computer and an Adafruit Pi-TFT Touch Screen Display. The list of components, along with links, is below. Since I built the initial DX Alarm Clock almost a year ago and technology is always advancing, some of the parts are no longer available or have better replacements available. I’ll provide information on what I used and a recommended replacement. Approximate prices are included.
Raspberry Pi 3
Motherboard: Raspberry Pi 3 ($35) – includes a 1.2 GHz 64-bit quad-core ARM CPU, Built-in WiFi, Ethernet, 4 USB Ports, an HDMI port and audio port (3.5″), and Bluetooth.
Portable Speaker: Any small portable/rechargeable speaker will do. Mine is a Kinivo, but it is no longer available. Any small speaker will do as long as it is Bluetooth or has a 3.5″ stereo connector.
Raspberry Pi Development Environment
Pi Development Environment
After constructing the Raspberry Pi case and TFT Display, the next step was to connect it to a monitor via the HDMI port, a mouse via one of the USB ports, and a Bluetooth keyboard. Then I loaded the Raspbian Operating System onto the Pi via the micro SD card. I first copied the OS to the Micro SD card using a PC or Mac and then inserted the card into the Raspberry Pi and booted from it. You can find a good tutorial on how to do this at https://www.raspberrypi.org/learning/software-guide/quickstart/.
Once Raspbian is installed, you will have a windows GUI (Graphical User Interface) environment with a web browser and several additional applications included.
This gave me a development environment that I could use to build and test the DX Alarm Clock software. I used Python language to develop the software. I used the Python IDLE development environment, which is included in the Raspbian OS.
We wanted a compact package that did not require anything but a power supply to run the final project. There are many great parts available for building a Raspberry Pi system. Here’s what we used:
Raspberry PI 3 Model B 1.2GHz 64-bit quad-core ARMv8 CPU, 1GB RAM
The assembly of the case and the hardware was straightforward. The folks at Adafruit provide a pre-built Jesse Linux image for the RPi, including the necessary driver for the Touch Screen Display.
After some configuration work and creating a few shell scripts to make it easy to boot the RPi to an HDMI display or to the Touch Display, we were ready to install the GH Tracker App. We also enabled the VNC Server on the RPi to use a VNC Client application on our MacBook Air instead of directly connecting a display, keyboard, and mouse to the RPi. Finally, we installed Samba on our RPi to allow files to be moved between our other computers and the RPi.
GHTracker Running on the Raspberry Pi
Jeff at Green Heron Engineering provided a copy of GHTracker V1.24 and the necessary serial interface library to enable its use on the RPi. Jeff is planning to make a tar file available with GH Tracker and the library in the near future. We did some configuration work on LXDE (the GUI interface for Linux that runs on the RPi), and it automatically runs GH Tracker whenever the RPi is booted up. We also optimized the GUI for the sole purpose of running GH Tracker on the Touch Screen Display. Finally, we configured the Ethernet and WiFi interfaces on the RPi to work with our home network and LTE Hotspot modem.
RPi GHTracker Test Setup
With all the software work done, it was time to test the combination with our Satellite Rotator System. The setup worked on the first try using a WiFi network connection between the MacBook Air Laptop running MacDoppler and the RPi. The USB-based serial ports, which control the Azimuth and Elevation direction of the rotators, worked as soon as they were plugged into the RPi. Also, the touchscreen interface works well with the GH Tracker App making the combination easy to use.
MacDoppler and GHTracker via VNC
The VNC Client/Server combination allows us to work with the software on the RPi right from our MacBook Air laptop. It also makes for a nice display for monitoring the GHTracker App’s operation from the Mac.
Thanks to the help from Jeff at Green Heron Engineering, this project was very easy to do and worked out well. The Raspberry Pi 3 platform is powerful and relatively easy to work with. It makes a great start for many Ham Radio projects. Also, there is a wealth of online documentation, how-to information, and open-source software for the RPi. I hope that some of our readers will give the RPi a try!