GPS Time Server

GPS NTP

GPS Controlled Time Server

There are many reasons to have an accurate time source in your station. Getting the best performance from WSJT-X modes like FT8 requires your computer clock to be synchronized to within a second for example. You can set your clocks accurately using NTP servers on the Internet. This is the most common way that most stations set their clocks.

What if you are portable and don’t have Internet access or what do you do if your Internet connection goes down? One way to solve these problems is to use a GPS controlled NTP time server in your station. We recently installed one from Leo Bodnar in our station.

GPS NTP

GPS Antenna

This device is simple to install. It just requires an Ethernet connection to your network and a GPS antenna. The antenna is included with the unit. The antenna will need to be outdoors with a reasonably clear view of the sky.

GPS NTP

GPS Satellite Lock Screen

After a minute or so after it is installed and powered up, the unit will synchronize to the visible GPS satellites in your location and report its coordinates. This indicates that you have a good GPS system lock and that the clock in the unit is accurate to within a microsecond.

GPS NTP

NTP Summary Screen

The unit gets its IP either from DHCP or via a fixed IP address that you can program. Once the unit is set, you use its IP address as the NTP server in your software to set your clocks. You would set you NTP server in a program like Dimension 4 to accurately set your computer’s clock for example. You will want to disable your computer’s normal Internet clock setting function to avoid conflicts with Dimension 4. Once this is set up, your computer clock will be synchronized to the GPS system and will be very accurate and you will get the best performance from WSJT-X.

Fred, AB1OC

Satellite Station 4.0 Part 7 – Flex SDR Satellite Transceiver

Flex-6700 SmartSDR in Satellite Mode

A major part of our plans for Satellite Station 4.0 includes the ability to operate our home satellite station remotely over the Internet. We’ve been using our Flex-6700 Software Defined Radio (SDR) as a Remote Operating Gateway (GW) on the HF Bands and 6m for some time now. Our latest project is to upgrade our Remote Operating GW to support satellite operations on the 2m, 70cm, and 23cm bands.

Remote Gateway Rack with Satellite Additions

Adding the additional bands for satellite operations involves adding a 2m Amplifier, a 70cm Transverter, and a 23cm Upconverter to our SDR-based Remote GW. We decided to repackage our Remote GW set up in a rack mount cabinet on casters. This allows all of the required gear to be placed under the desk in our station in a way that is neat and reliable.

We also added an Ethernet Switch, a pair of USB hubs, and upgraded power and remote controls to improve our ability to manage our station remotely and to simplify the interconnections between our Remote GW and the rest of our station. The final assembly mounts all of the components in the rack on 5 levels as follows:

These purpose of these components is explained in more detail below.

All of these devices are powered from 13.8 Vdc station power to avoid the potential for noise from wall wart transformers inside the rack. Also, attention was paid to the isolation of the digital and RF components on separate levels to minimize the chance that noise from digital signals would leak into the RF chains.

Satellite SDR

Remote Satellite SDR System Design

The diagram above shows how the added components for the satellite bands interconnect with the Flex-6700. The new components include:

The Flex-6700 can generate and receive signals on the 2m band but it does this at IF power levels. The 2m LPDA brings the IF power level up to a maximum of 75 watts. The DIPs device enables the Flex-6700 to operate in U/v, V/u, and L/v modes.

The 28 MHz splitter allows a total of 4 transverters/upconverters to be connected to the radio. This will enable us to add 5 GHz and 10 GHz bands to our satellite station in the future.

Our Flex-6700 includes a GPS Disciplined Oscillator (GPSDO) which provides an accurate and stable 10 MHz reference output to lock the 70cm and 23cm units frequencies. The 10 MHz Reference Distribution Amplifier expands the single 10 MHz on the Flex-6700 to drive up to 4 transverters or upconverters.

The two USB cables allow the Flex-6700 and SmartSDR to control the LPDA and PTT for the 70cm and 23 cm bands.

2m/70cm Shelf

The rackmount arrangement uses shelves which provide ventilation for the components and enable us to use zip ties to tie down all of the components. The photo above shows the layout of the shelf which contains the 2m LPDA, the 70cm Transverter and many of the RF interconnections. Velcro tape is used to secure the smaller components to the shelf.

2m/70cm Shelf RF Interconnection Details

The photo above shows the RF interconnections. The 70cm Transverter is on the upper left and the 2m LPDA is on the upper right. The rectangular boxes coming from these devices are the sensors for the WaveNode WN-2 Power and SWR Meter that we are using. They are terminated in 50-ohm dummy loads for initial testing. The DIPS device is center bottom and the 4-port device above it is the 28 MHz splitter. All of the interconnections are handled using 50-ohm BNC cables and the unused ports on the 28 MHz splitter are terminated with 50-ohm BNC terminators.

Rear View of Remote Gateway Rack

The photo above shows the rear of the unit. The 10 MHz Reference Distribution Amplifier (bottom center) and the two Industrial 12V powered USB hubs are visible at the bottom of the unit. The DC power distribution components are at the upper left and a set of Internet-controlled relays are at the upper right.

USB Connections via Hubs

One of the USB hubs fans out a single USB connection from the host PC to the USB controlled devices in the Remote GW rack. The other USB hub expands the USB outputs of the Flex-6700 to accommodate the control cables for the devices in the rack and the CAT cable which provides frequency data to the microHam SMD Antenna Controller.

Power Control and Distribution Design

Remote control and distribution of DC power to all of the devices in our Remote GW is an important design consideration. In addition to proper fusing, one must be able to remotely turn individual and groups of devices on and off remotely. The diagram above shows the power distribution and control architecture that we are using.

13.8 Vdc Power Distribution

RigRunner power distribution blocks are used to fuse and distribute power to all of the accessory devices in the rack.

Remote Gateway Power Controls

The RigRunner 4005i provides remote power control via the Internet for all of the major units and accessories in the rack. In addition to controlling power on/off states and providing electronic fusing, the RigRunner 4005i monitors voltage and current to the equipment in the Remote GW. These controls are accessed via a web browser and a network connection. Login/password security is also provided.

Remote Control Relay Unit

A microBit Webswitch device provides Internet controlled relays to manage various station functions including:

After some configuration of the Transverters and PTT controls in SmartSDR, the satellite portion of our Remote GW is up and running. There is quite a bit of software installation and configuration left to do and we’ll cover that in a future post.

You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Satellite Station 4.0 Part 6 – Tower Finishing Touches

New Shack Entry and Ground Block

We recently completed the finishing touches on our new VHF/Satellite Tower. The first step was to install a second set of entry conduits into our shack and a new ground block for our satellite antennas. This involved installing 4″ PVC conduits into our shack. The new entries are very close to the base of our tower and this will allow us to keep our feedlines as short as possible.

Hardline Coax Cables Up The Tower

We also replaced the section of our feedlines which run down the tower with 7/8″ hardline coax. We installed a total of four runs for 6m, 2m, 70cm, and 23cm. The use of hardline coax will help reduce our feedline losses – especially on 70cm and 23cm.

Hardlines at Base of Tower

The new hardlines are connected one of the two entries into our shack. The 6m hardline enters on the side closes to our antenna switching matrix and the 2m, 70cm, and 23 cm hardlines will enter the shack via the newly created entry which will be close to our satellite transceiver.

The next step in our project will be to upgrade our Flex-6700 SDR based Remote Gateway for operation on the satellite bands. You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Upgrading our 2.0 Satellite Station for ARISS Contacts

We have been working with Hudson Memorial School near Nashua, NH to prepare for a possible ISS crew contact. The ARISS folks work with schools and their Ham Radio helpers to prepare for these contacts. ARISS provides recommendations for ground station equipment to help ensure a good experience for the students. The ground station recommendations provide a solid set of specifications to support communications with the ISS on the 2m band. The recommendations include things such as:

  • A requirement to build both a primary and a backup ground station
  • Radio and power specifications (a 200W amp is recommended)
  • Antenna specifications including recommendations to provide for switchable LHCP and RHCP
  • Computer controlled azimuth/elevation positioning of antennas to track the ISS
  • Use of a receive preamplifier at the antenna
Portable Satellite Station 3.0 Antenna System

Portable Satellite Station 3.0 Antenna System

We have recently completed construction and testing of our Portable Satellite Station 3.0 which was built specifically to meet the primary station requirements for our ISS contact.

Our plan is to add some upgrades to our Portable Satellite Station 2.0 to create a Portable 2.1 Station which meets the backup station requirements. These upgrades will include:

All of the equipment needed to upgrade our 2.0 Portable Station to 2.1 is either here or will arrive shortly. Here’s some more information on the planned equipment.

Icom IC-910H Transceiver

Icom IC-910H Transceiver

The Icom IC-910H was Icom’s flagship Transceiver for Satellite work before the IC-9100 was released. It’s a very nice satellite radio! Dave, K1DLM graciously lent us his IC-910H for use in our backup station.

Green Heron RT-21 AZ/EL Rotator Controller

Green Heron RT-21 AZ/EL Rotator Controller

We already have a Green Heron Az/El Rotator controller setup for the Yaesu Rotator system on the 2.0 Antenna Tower and we will be reusing it for the 2.1 station.

GHTracker Running On A Raspberry Pi 3

GHTracker Running On A Raspberry Pi 3

We are also planning to build a second Raspberry Pi Rotator Interface for it.

M2 Antenna Systems PS2MCP8A Polarity Switch

M2 Antenna Systems PS-2MCP8A Polarity Switch

M2 Antenna Systems recently added a new 2M polarity switch, the PS-2MCP8A, designed for use with the 2M antenna in their LEO Pack which we are using in our 2.0 Antenna System. We will be installing this relay as well as a PS-70CM polarity switch relay for the LEO pack’s 70cm antenna as part of the 2.1 Antena System upgrade.

DXEngineering EC-4 Control Box

DXEngineering EC-4 Control Box

We will add another DXEngineering EC-4 BCD Control Console to control the polarity switching relays on the upgraded antennas.

m RM ITALY LA-250V Amplifier

RM ITALY LA-250V Amplifier

The final new component in our 2.0 to 2.1 upgrade is the addition of a 200W RM ITALY LA 250 power amplifier. We have opted for the version of this amplifier with the cooling fans. The unit is very well made and we are anxious to see how it performs on the air.

Some of our readers might be wondering what we are planning to do with all of Portable Satellite Ground Station equipment in the long run? We plan on keeping the 1.0 Portable Station for grid square activations and demonstrations. Its simple, battery-powered approach and small antenna make it ideal for this sort of work.

The upgraded 2.0 Portable Station with its enhanced polarity switching will become our transportable station for License Class and Field Day use. It will be converted at the end of 2018 to use our Icom IC-9100 Transceiver that is currently part of the 3.0 station.

We plan to use the Portable 3.0 Station through the year (2018) to support the planned ARISS contact, Field Day, and some demonstrations at local Ham Fests and schools. Once these are complete, we plan to permanently install it here at our QTH and it will become our main satellite ground station at our home QTH.

You can view all of the articles about our Portable Satellite Stations via the links below.

We will begin construction of the 2.1 upgraded station once a few remaining components arrive here. We plan to share some more about the construction and initial testing of our 2.1 Portable Station here.

Fred, AB1OC

PTT Router for Satellite Station 3.0

ARR Satellite Preamp

Advanced Receiver Research Remote Preamp

Our Satellite Station 2.0 antenna system uses a pair of Advanced Receiver Research Remote preamplifiers at the antennas to boost weak signals. These preamps have RF sensing and switching to protect them during transit. While this system works well; we are always concerned about the impact of the RF power affecting the long-term reliability of these devices and the associated radio equipment.

M2 Antenna Systems S3 Sequencers

M2 Antenna Systems S3 Sequencers

Our Satellite Station 2.0 uses a pair of M2 Antenna Systems S3 Sequencers to control the preamps remotely. For U/V and V/U mode satellites, it’s a simple matter to turn off the uplink band preamp to protect it against RF during transmit. The problem with this approach comes when working satellites and the International Space Station in simplex (single band) modes. In these situations, we need a solution which keys the sequencers externally so that the sequencers can properly control the changeover of the preamps from receive to transmit mode before keying our radio (an Icom IC-9100). We also wanted a solution which could also allow the radio initiate the keying of the sequencers for CW break-in keying and digital modes.

PTT Router

PTT Router

Our solution was to design and build a simple Push-To-Talk (PTT) router. This device allows an external source such as a footswitch or a trigger switch to initiate the keying. The design also includes indicators which confirm that the keying sequence has completed.

PTT Router Schematic Diagram

PTT Router Schematic Diagram

Our first step was to create a simple design which allowed for either an external switch or the radio to initiate keying. The PTT source switch (S1) selects the keying source and uses the Hsend  (2m key) and Vsend (70cm/1.2 GH key) lines on the Icom IC-9100 accessory jack as either the means to key the radio or the means to detect that the radio has initiated a transmit keying sequence. A second switch (S2) selects which VFO is keyed when the keying source switch (S1) is in External mode. Finally,  indicators for power and keying complete were added.

Rear Panel Connectors

Rear Panel Connectors

A small enclosure was used to house the switches, indicators, and the connections to the rest of our Satellite Station. The image above shows the rear-panel connections to external PTT sources, the S3 Sequencers, the IC-9100 Radio, and a 12 Vdc station power source.

PTT Router Internal View

PTT Router Internal View

A pair of terminal strips were mounted inside the enclosure to make connecting all of the components easier. The wiring is pretty dense around the front and rear panels so connections were insulated with heat shrink tubing. A small PCB could easily be created to make replicating the prototype easier should we decide to build more copies of the design.

Satellite Station 3.0 Controls

Satellite Station 3.0 Controls

Our new PTT router was easy to integrate into our Satellite Station 3.0 setup. Integration required some custom cables to be made to connect our PTT router to the sequencers and to the accessory jack of the radio. With the integration completed, we are now able to properly sequence the control of the preamps and the radio in all modes of operation. Here are some more articles which include more about our portable satellite stations –

Fred (AB1OC)

An 80m Broadband Matching System

Our Tower with 75m Loop

Our Tower with 75m Loop

We installed a 75m loop for SSB operation on our tower when we built it. The loop is full size and is diamond shaped so that our lower SteppIR DB36 yagi can rotate inside of it. The loop is fed at the bottom corner about 20 ft up from the ground. It works great for SSB operation on 75m but we have often wished we could use it across the entire 80m band. This goal led to a project to create a matching system for the antenna. The idea was to use a set of loading coils in series at the feed point create a good match in all segments of the 80m band.

EZ-NEC Model for 75m Loop

EZ-NEC Model for 75m Loop

The first step in the design of our 80m matching system was to build a model of our current loop using EZ-NEC. The model was then used to determine the correct values of a set of series loading inductors to match different segments of the 80m band.

Matching System Design Analysis

Matching System Design Analysis

We also considered how likely different segments of the 80m band were to be used by profiling historical spotting data from DXSummit. All of this analysis led to the creation of a final design which is captured in the spreadsheet shown above. The final design requires our current 75m loop to be shortened a bit to work well at the very top of the 80m band.

Modeled Loading Coil Inductance Values

Modeled Loading Coil Inductance Values

A set of 5 different inductor pairs can be used in series with the loop’s feed point to create a good match across the entire 80m band. The modeled values for the series matching inductors is shown above.

Matching System Modeled SWR

Matching System Modeled SWR

Our microHAM control system can easily implement the switching of the various inductance values based upon the frequency that a radio using the antenna is tuned to. Result modeled SWR for the final 80m loop and match combination is shown above. The design should achieve an SWR < 1.5:1 across the entire 80m band except for the very top where the SWR remains < 2:1. Also, the design optimizes the system’s SWR in the important CW DX, SSB DX, and Digital windows on the 80m band.

Layout of Components in Enclosure

Layout of Components in Enclosure

With the design completed, we choose an enclosure and all of the components. Here are the details of what we used:

The first step in the construction was to layout all of the components in the enclosure. Attention was paid to keeping the two series inductors at right angles to avoid coupling and to keep RF connections as short as possible. The relays were arranged to keep the leads connecting to the coils of roughly equal length. Finally, the control circuitry was kept as far removed from the RF leads as possible.

Enclosure Mounting Ears and Clamps

Enclosure Mounting Ears and Clamps

The matching system attaches to a tower leg via saddle clamps. We fabricated a set of mounting ears and spacer blocks to position the enclosure far enough away from the tower so that the antenna connections do not interact with the tower.

80m Matching System Construction

80m Matching System Construction

A summary of the completed matching system construction is shown above.The design uses a set of four double-pole double-throw relays to switch in different coil taps which selects the loading inductance provided by the matching system.

We did a set of calculations and found that our relays would be subjected to a worst case peak-peak voltage of about 2.1 KVp-p at the coil tap points.

The relays are arranged such that two sets of contacts have to be traversed to select any given coil tap. The relays we are using have a third pole which we are not using. We disassembled each relay and removed the internal contact wiring for the center pole which improves both the coil to contact voltage rating and the isolation values of the relays.

These steps combine to improve the voltage rating of the system. This is an important design element given that the match will operate at legal limit power.

Completed RF Deck

Completed RF Deck

The completed RF deck and control circuitry is shown above. The enclosure we choose came with a removable plastic plate that made mounting and wiring all of the components simple.

Loading Coil Mounting and Taps

Loading Coil Mounting and Taps

The loading inductors are mounted using nylon hardware with the ends connected to the two antenna terminals on the sides of the enclosure. The coils use movable tap clips to allow us to fine-tune the match once the system is installed with the antenna on our tower. The initial clip locations are set to create the inductance values modeled during the design phase.

Relay Control Circuit Connections

Relay Control Circuit Connections

The relay control leads use twisted pair wiring to minimize RF pickup. The control leads are routed away from the RF connections to minimize potential RF coupling.

Relay Control Circuit Details

Relay Control Circuit Details

The control circuits for each relay use a combination of a Diode, a Varistor (MOV) and a filter capacitor in parallel to avoid relay coil switching interference and to suppress control line noise.

1.5 to 1 Matching Balun

1.5 to 1 Matching Balun

The matching system is designed to operate at 75-ohms which is pretty close to the resonant impedance of our 75m loop. The current antenna uses a 1.5:1 Balun to match the loop to our 50-ohm coax feedline. We disassembled an identical matching balun (actually a 75-ohm balun plus a 1.5:1 unun) and used it without its enclosure to create a final 50-ohm match.

MicroHAM Setup to Control 80m Matching System

MicroHAM Setup to Control 80m Matching System

The final step in the construction of our matching system was to program our microHAM antenna switching system to properly configure the relays in our matching system. This was quite simple to do using microHAM’s frequency dependent antenna control capabilities. The microHAM system automatically operates the appropriate relays to create the best possible match as the radio which is using the matching system is tuned across the 80m band.

Unfortunately, we are in the middle of winter here in New England so I will have to wait for warmer weather to install our new matching system on the tower and make the final adjustments. I am planning another article here when the final integration steps are done to cover the performance of the completed project.

Fred, AB1OC

Remote Operating Enhancements

Updated Remote Operating Setup

Updated Remote Operating Setup

As explained in a previous article, we have been working on enhancing our FlexRadio 6700 based Remote Operating Setup to include additional remote control client options, better remote networking via the Internet, and better integration with our microHAM system.

Remote Operating Architecture

Remote Operating Gateway Architecture

This project involved the addition of the following capabilities to our base Remote Operating Setup:

These steps are now complete and we have some good results to share.

SmartSDR V2 Remote Connection

SmartSDR V2 Remote Connection

The first part of the upgrade was to update to SmartSDR V2. This upgrade enables much improved SmartSDR operation over the Internet. Our previous approach, which used a tunneled VPN connection combined with the previous versions of SmartSDR did not always perform well when used with low-bandwidth or high latency Internet connections. SmartSDR does much better in this area.

SmartSDR CAT Remote

SmartSDR CAT Remote

DAX Operating Remote

DAX Remote

 

 

 

 

 

 

 

 

 

 

 

 

Both the SmartSDR CAT and the SmartSDR DAX application have been updated to allow software on a PC being used to operate the FlexRadio SDRs over the Internet to gain access to CAT and sound interfaces associated with the radio.

FlexRadio Maestro Console

FlexRadio Maestro Console

We also added a Maestro Console to enhance the usability of the SDR radio portion of our Remote Operating Gateway. The Maestro is very easy to use and extends the available controls and display space which was limited when using just a laptop PC. The Maestro supports direct microphone connections for phone operation and also works with connected CW paddles for operation in CW mode. I have been using a single level paddle along with our Maestro as speeds of 22 WPM with full QSK. Sending CW at these speeds with the Maestro works well.

The Maestro has built-in WiFi and Ethernet connections and full support for SmartSDR V2’s connections over the Internet. The Maestro can operate from AC power or from an internal battery pack. I have a couple of spare rechargeable batteries for our Maestro to support longer operating sessions on battery.

TeamViewer VPN

TeamViewer VPN

We have been using a combination of TeamViewer Remote Control software and a router-based VPN solution to enable control of our antenna controllers and station power/amplifiers. This arrangement works well but most of our readers probably do not have a router which can support VPN connections or the networking knowledge to set up a secure VPN system.

A much simpler VPN solution can be realized by utilizing TeamViewer’s built-in VPN capability. You simply install TeamViewer on a PC in you shack which can access you station accessories and on your remote operating laptop or PC. You then enable TeamViewer’s VPN option and the configuration is complete.

TeamViewer VPN Connection

TeamViewer VPN Connection

We now use TeamViewer to set up both a VPN connection and a remote desktop control connection to a computer in our shack which can control amplifiers, power, and other station accessories associated with our Remote Operating Gateway We use TeamViewer in this way to control our microHAM Station Master Deluxe antenna controllers, RigRunner remote power controller, a microBit Webswitch device and an Elecraft KPA500 amplifier which are all part of our station’s Remote Operating Gateway.

DXLab Operating Remote

DXLab Operating Remote

With the addition of the SmartSDR and the updated TeamViewer/VPN setup, we can operate our station remotely over the Internet. We have tested our setup using a Wireless Hotspot modem and Verizon’s LTE service. The combination of our PC running the DXLab Logging Suite and the Maestro work great in this configuration.

We have found the need to initialize the networking configuration in a specific order to get everything running correctly. The steps that we use are as follows:

  1. Connect the laptop PC to the Internet
  2. Bring up the TeamViewer VPN connection
  3. Run SmartSDR on the laptop PC and login to SmartSDR Remote
  4. Bring up the DXLab’s Suite including Commander (currently, DXLab’s Commander has some issues connecting when the FlexRadio protocol is used. We have found that the KENWOOD protocol works fine.)
  5. Bring up the remote control application for the Elecraft amplifier and access our RigRunner power controller and microBit Webswitch units to turn on accessories as needed
  6. Initiate a second TeamViewer Remote Control connection and use it to run the microHAM remote antenna controller in a single window
  7. Shutdown SmartSDR on the laptop PC and bring up the connection to the radio via the Maestro.

There is obviously still some room for simplification in this initialization procedure. I expect that some simplification will come as all of the software involved becomes more mature and is further adapted for remote operation.

Once initialized properly, its simple to use the PC and Maestro combination to work SSB Phone or CW contacts. The DXLab Logging Suite will follow the radio, track modes, handle split operation, and allow control of our antenna rotators via DXView. We can click on spots in DXLab’s SpotCollector to automatically set the FlexRadio SDR’s mode, frequency, and split configuration. The Maestro and DXLab will stay in sync during tuning, mode changes, and other radio operations.

Remote Digital Operation using WSJT-X and FT8

Remote Digital Operation using WSJT-X and FT8

The final part of this project was to add the latest Version of the WSJT-X software to our Remote Operating client laptop PC to enable FT8 operation on the HF bands and MSK144 for Meteor Scatter work on 6m.

SmartSDR and JTAlert Supporting Remote FT8 Mode

SmartSDR and JTAlert Supporting Remote FT8 Mode

We do not use the Maestro for digital operation. We leave SmartSDR running on our remote laptop PC instead. We also use the JTAlert application to create an automated bridge between WXJT-X and the DXLab Logging Suite.

The combination of SmartSDR V2 and WSJT-X work great remotely. We have used this combination to make quite a few FT8 contacts on the HF bands as well as several Meteor Scatter contacts on 6m using MSK144 mode.

These enhancements to our Remote Operating Gateway have helped both Anita and me to operate more. I have our Maestro either in my home office or on a table in our kitchen where we can listen to the bands and work DX when the opportunities come up. Remote Operating, even its just from another room at your QTH, is great fun!

We should be able to begin the next step in our station upgrade plans – the addition of an Elecraft KPA1500 shared amplifier, in the near future. The new amplifier will enable our Remote Operating Gateway to operate at legal limit 1500w out on the HF bands and 6m.

Fred, AB1OC

Plans for 2017 Station Upgrades – Radio, Shared Amplifier, and Remote Op Enhancements

Flex-6700 Software Defined Radio Stack

Current Flex-6700 Remote Operating Gateway and Icom IC-7600 Transceiver

We have a number of station upgrades planned for this fall. Our planned upgrades include:

We always begin our station projects by updating our station design documents.

Remote Operating Architecture

Updated Remote Operating Gateway Architecture

Our Remote Operating enhancements will include:

The figure above shows an updated architecture for our Remote Operating Gateway which includes these enhancements. The planned Elecraft KPA1500 solid state amplifier will simplify the software associated with remotely controlling and monitoring the amplifier, tuner, and wattmeter components in our previous remote operating setup.

Icom IC-7610 SDR-Based Transceiver

Icom IC-7610 SDR-Based Transceiver

We have been quite impressed with the performance of our Icom IC-7300’s radio’s receiver. As a result, we have decided to upgrade the second radio in Anita’s operating position to an Icom IC-7610. We expect that the IC-7610’s receiver performance will be as good as or better than the IC-7300.

Icom IC-7610 External Display

Icom IC-7610 External Display

The Icom IC-7610 also provides a very nice external display capability which will allow us to take the best advantage of the radio’s pan adapter. We believe that the IC-7610 will integrate easily into our microHAM system. It should be a “drop-in” replacement for our current IC-7600. We hope to see the IC-7610 shipping before the end of this year.

Elecraft KPA1500 Legal Limit Solid State Amplifier

Elecraft KPA1500 Legal Limit Solid State Amplifier

Our final upgrade will be to add an Elecraft KPA1500 Solid State Amplifier. This amplifier provides a full 1500 watts out on all bands 160m – 6m. The new amplifier will bring the Icom IC-7610 and our FlexRadio SDR-Based Remote Operating Gateway up to full legal limit power. This will be especially helpful on the 6m band where both the IC-7610’s and the FlexRadio 6700’s excellent receiver performance will help us to take the best advantage of the extra power for Meteor Scatter and other weak signal work on 6m.

microHam Shared Amplifier

microHAM KPA1500 Shared Amplifier Design

Our microHAM Station Automation System can accommodate shared amplifiers. We will take advantage of this capability when we integrated the Elecraft KPA1500 into our station. The shared amplifier setup will also allow us to eliminate one of our bandpass filters. The KPA1500 amplifier integrates autotuner and wattmeter functions into the amplifier and provides a direct Ethernet interface for remote control and management. These enhancements should eliminate the need for several of the remote control server software applications that we are currently running on a PC in our shack. Also, we can manage all of these functions from a single client application on a remote client PC. These simplifications will make our remote operating gateway setup more reliable and easier to use.

FlexRadio Maestro Control Console

FlexRadio Maestro Control Console

We plan to share more on these projects in future posts here on our Blog. The FlexRadio Maestro and all of the other components that we need for Remote Operating Gateway enhancements have arrived. We will complete this part of our project in the very near future and post more here.

Also, it appears that the local control interface to the new Elecraft KPA1500 amplifier is nearly identical to that used by our current Elecraft KPA500 Amplifier. This means that we can begin our shared amplifier upgrades using the KPA500. We do not have a firm date for the IC-7610 to ship and that portion of our upgrade plans is likely to be our last step in the project.

Special thanks to Dave, K1DLM who has helped us with ideas for several aspects of this project.

Fred, AB1OC

Fall Antenna Projects – A New Low-Band Receive Antenna System

NCC-1 Receive Antenna System Control Unit and Filters

NCC-1 Receive Antenna System Control Unit and Filters

Anita and I like to take advantage of the mild fall weather to do antenna projects at our QTH. We have completed two such projects this fall – the installation of a Two-Element Phased Receive System and a rebuild of the control cable interconnect system at the base of our tower.

NCC-1 Receive Antenna System Components

NCC-1 Receive Antenna System Components

Our first project was the installation of a DXEngineering NCC-1 Receive Antenna System. This system uses two receive-only active vertical antennas to create a steerable receive antenna system. The combination can work on any band from 160m up to 10m. We set ours up for operation on the 80m and 160m bands.

NCC-1 Receive System Antenna Pattern

NCC-1 Receive System Antenna Pattern

The NCC-1 System can be used to peak or null a specific incoming signal. It can also be applied to a noise source to null it out. The direction that it peaks or nulls in is determined by changing the phase relationship between the two Active Antenna Elements via the NCC-1 Controller.

NCC-1 Filter Installation

NCC-1 Filter Installation

The first step in the project was to open the NCC-1 Control Unit to install a set of 80m and 160m bandpass filter boards. These filters prevent strong out-of-band signals (such as local AM radio stations) from overloading the NCC-1. The internal switches were also set to configure the NCC-1 to provide power from an external source to the receive antenna elements through the connecting coax cables.

Installed Active Receive Antenna Element

Installed Active Receive Antenna Element

The next step in the project was to select a suitable location for installing the Receive Antenna Elements. We choose a spot on a ridge which allowed the two Antenna Elements to be separated by 135 ft (for operation on 160m/80m) and which provided a favorable orientation toward both Europe and Japan. The antenna elements use active circuitry to provide uniform phase performance between each element’s 8 1/2 foot whip antenna and the rest of the system. The antenna elements should be separated by a 1/2 wavelength or more on the lowest band of operation from any towers or transmit antennas to enable the best possible noise rejection performance.

Received Antenna Element Closeup

Received Antenna Element Closeup

The two Antenna Elements were assembled and installed on 5 ft rods which were driven into the ground. To ensure a good ground for the elements and to improve their sensitivity, we opted to install 4 radials on each antenna (the black wires coming from the bottom of the unit in the picture above). The Antenna Elements are powered through 75-ohm flooded coax cables which connect them to the NCC-1 Control Unit in our shack. The coax cable connections in our setup are quite long –  the longer coax of the pair being approximately 500 ft. The use of flooded coax cable allows the cables to be run underground or buried. Should the outer jacket become nicked, the flooding glue inside the cable will seal the damage and keep water out of the cable.

Receive RF Choke

Receive RF Choke

It is also important to isolate the connecting coax cables from picking up strong signals from nearby AM Radio stations, etc. To help with this, we installed Receive RF Chokes in each of the two coax cables which connect the Antenna Elements to the NCC-1. These chokes need to be installed on ground rods near the Antenna Elements for best performance.

Underground Cable Conduit In Our Yard

Underground Cable Conduit In Our Yard

We ran the coax cables underground inside cable conduits for a good portion of the run between the antenna elements and our shack. The conduits were installed in our yard when we built our tower a few years back so getting the coax cables to our shack was relatively easy.

Receive Antenna Coax Ground System

Receive Antenna Coax Ground System

The last step in the outdoor part of this project was to install a pair of 75-ohm coax surge protectors near the entry to our shack. An additional ground rod was driven for this purpose and was bonded to the rest of our station’s ground system. We routed both of the 75-ohm coax cables from the two Antenna Elements through surge protectors and into our shack. Alpha-Delta makes the copper ground rod bracket shown in the picture for mounting the surge protectors on the ground rod.

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

Antenna Equipment Shelf In Our Shack (The NCC-1 Control Unit Is At The Bottom)

The installation work in our shack began with the construction of a larger shelf to hold all of our antenna control equipment and to make space for the NCC-1. The two incoming coax cables from the Antenna Elements were connected to the NCC-1.

microHAM Station Master Deluxe Antenna Controller

microHAM Station Master Deluxe Antenna Controller

Antenna switching and control in our station is handled by a microHAM System. Each radio has a dedicated microHAM Station Master Deluxe Antenna Controller which can be used to select separate transmit and receive antenna for the associated radio. The microHAM system allows our new Receive Antenna System to be shared between the 5 radios in our station.

Antenna Switching Matrix

Antenna Switching Matrix

The first step in integrating the Receive Antenna System was to connect the output of the NCC-1 to the Antenna Switching Matrix outside our shack. We added a low-noise pre-amp (shown in the upper left of the picture above) to increase the sensitivity of the Antenna System. The blue device in the picture is a 75-ohm to 50-ohm matching transformer which matches the NCC-1’s 75-ohm output to our 50-ohm radios. The other two pre-amps and transformers in the picture are part of our previously installed 8-Circle Receive Antenna System.

Multi-Radio Sequencer

Multi-Radio Sequencer

The Antenna Elements must be protected from overload and damage from strong nearly RF fields from our transmit antennas. In a single radio station, this can be handled via a simple sequencer unit associated with one’s radio. In a multi-op station such as ours, it is possible for a different radio than the one which is using the Receive Antenna System to be transmitting on a band which would damage the Receive Antenna System. To solve this problem, we built a multi-radio sequencer using one of the microHAM control boxes in our station. The 062 Relay Unit shown above has one relay associated with each of the five radios in our station. The power to the Receive Antenna System is routed through all 5 of these relays. When any radio transmits on a band that could damage the Antenna Elements, the associated relay is automatically opened 25 mS before the radio is allowed to key up which ensures that the system’s Antenna Elements are safely powered down and grounded.

microHam Antenna System Diagram

Updated microHam Antenna System Diagram

With all of the coax and control connections complete, I was able to update the microHam system design information for our station and add the new receive antenna system to our setup. You can find more about the programming of our microHam system here.

NCC-1 Controls

NCC-1 Controls

So how well does the system work? To test it, we adjusted the NCC-1 to peak and then null a weak CW signal on 80m. This is done by first adjusting the Balance and Attenuator controls on the NCC-1 so that the incoming signal is heard at the same level by both Antenna Elements. Next, the B Phase switch is set to Rev to cause the system to operate in a signal null’ing configuration and the Phase control is adjusted to maximize the nulling effect on the target signal. One can go back and forth a few times between the Balance and Phase controls to get the best possible null. Finally, the incoming signal is peaked by setting the B Phase switch to Norm.

Peaked And Null'ed CW Signal

Peaked And Null’ed CW Signal

The picture above shows the display of the target CW signal on the radio using the NCC-1 Antenna System. If you look closely at the lower display in the figure (null’ed signal) you can still see the faint CW trace on the pan adapter. The difference between the peak and the null is about 3 S-units or 18 dB.

NCC-1 Used For Noise Cancellation

NCC-1 Used For Noise Cancellation

The NCC-1 can also be used to reduce (null out) background noise. The picture above shows the result of doing this for an incoming SSB signal on 75m. The system display at the top shows an S5 SSB signal in the presence of S4 – S5 noise (the lower display in the picture). Note how clean the noise floor for the received SSB signal becomes when the unit is set to null the noise source which comes from a different direction than the received SSB signal.

We are very pleased with the performance of our new Receive Antenna System. It should make a great tool for DX’ing on the low-bands. It is a good complement to our 8-circle steerable receive system which we use for contesting on 160m and 80m.

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Tower Control Cable Interconnects (Bottom Two Gray Boxes)

Our other antenna project was a maintenance one. We have quite a number of control leads going to our tower. When we built our station, we placed surge protectors at the base of our tower and routed all of our control leads through exposed connections on these units. Over time, we found that surge protection was not necessary and we also became concerned about the effects that sunlight and weather were having on the exposed connections. To clean all of this up, we installed two DXEngineering Interconnect Enclosures on our tower and moved all the control cable connections inside them.

Inside View Of Interconnect Enclosures

Inside View Of Interconnect Enclosures

We began with a pair of enclosures from DXEngineering and we mounted screw terminal barrier strips on the aluminum mounting plates in each enclosure. The aluminum plates are grounded via copper strap material to our tower.

Closer Look At One Of The Interconnect Enclosures

Closer Look At One Of The Interconnect Enclosures

The picture above shows one of the interconnection boxes. This one is used to connect our two SteppIR DB36 Yagi Antennas and some of the supporting equipment. The barrier strips form a convenient set of test points for troubleshooting any problems with our equipment on the tower. There are almost 100 control leads passing through the two enclosures and this arrangement keeps everything organized and protected from the weather.

With all of our antenna projects complete, we are looking forward to a fun winter of contesting and low-band DX’ing.

73,

Fred, AB1OC

 

Summertime Station and Antenna Projects At AB1OC/AB1QB

Summer is the time of year that many of us work on our antennas and improve our stations. Anita AB1QB and I did both of these things at our QTH this summer.

Removing Lower SteppIR Yagi From Tower

Removing Lower SteppIR Yagi From Tower

Our SteppIR DB36 Yagis were due for some maintenance so we took them off our tower. A special thanks to all the members of the Nashua Area Radio Club who helped us remove, recondition and reinstall our antennas! Matt Strelow, KC1XX of XX Towers and Andrew Toth provided equipment and know how to safely remove our two large SteppIR DB36 Yagis with help from the rest of us.

Lowering Antenna With Electric Winch

Lowering Antenna With Electric Winch

The SteppIR DB36 Yagis weigh almost 200 lbs each and Matt made good use of his electric winch to lower them.

Antenna Coming Down The Tram Line

Antenna Coming Down The Tram Line

The picture above shows the lower antenna coming off the tower. We used a Tram Line system to lower both antennas to the ground so that we could rebuild them.

SteppIR DB36 Antenna On The Ground

SteppIR DB36 Antenna On The Ground

The SteppIR DB36 Yagis are quite large. They have 36 ft booms and the driven elements are almost 50 ft from tip to tip! They completely fill up our back yard when they are both off the tower.

Element Pole Sun Damage

Element Pole Sun Damage

The rebuild process began with a careful inspection of both antennas. They were both in good overall condition with some sun damage to the paint on the fiberglass element poles.

Disassembled SteppIR DB36

Disassembled SteppIR DB36

We removed all the element tubes and sweeps from both antennas for rebuilding. The picture above shows the disassembled upper antenna.

Reconditioned Stepper Motors Installed

Reconditioned Stepper Motors Installed

All four Stepper motors on both antenna were replaced. These motors move metal tapes inside hollow element tubes to adjust the length of each antenna’s 4 movable elements. These adjustments are done automatically by controllers in our shack which receive frequency information from the radios which are connected to each antenna.

Reconditioned Element Sweep Poles

Reconditioned Element Sweep Poles

All of the element housing poles were cleaned, prepped and painted with a UV resistant clear coat to protect them from further sun damage. The poles cleaned up like new.

New Element Sweeps Ready For Installation

New Element Sweeps Ready For Installation

The assembly of all the new element sweep tubes (shown above) was done next. Each antenna has six sweeps.

Element Pole Preparation

Element Pole Preparation

The end of each element pole must be prepped with a tape system which ensures that the poles are seated properly, sealed to and firmly attached to the sweeps. This process and the associated assembly and tightening of the element couplers was the most time-consuming step in the rebuild process as it had to be repeated a total of 24 times.

Rebuilt Element Assembly

Rebuilt Element Assembly

Here’s a picture of one of the rebuilt element tube assemblies. The ropes support the element tubes and keep them aligned when the antenna is up in the air. These elements are attached to the antenna motors with couplers and clamps.

SteppIR DB36 Yagi - Rebuild Complete

SteppIR DB36 Yagi – Rebuild Complete

The picture above shows the lower antenna with all the element tubes reattached. There is quite a bit of additional prep work associated with adjusting all the supports and taping all the exposed areas of the antennas which are susceptible to sun damage. Also, all the electrical wiring on the antenna must be checked to ensure good electrical connections and good overall condition of the wiring.

Ground Test Setup

Ground Test Setup

The final step in rebuilding the antennas is to test their operation on the ground. This ground test is done to ensure that all the motors are working correctly and that the element tapes move smoothly inside the rebuilt element tubes.

Ground Test Results

Ground Test Results

Another important part of the antenna Ground Test is to confirm that the antennas have a consistent resonant frequency and SWR on all bands. The resonant frequencies and SWR levels are far from those that would be measured when the antennas are on the tower at operating height. The idea here is to confirm that a resonance exists and that its frequency and SWR readings are repeatable as the antenna is adjusted to different bands.

With both antennas rebuilt, its was time for Matt and Andrew to return and, with help from folks from our club, reinstall the rebuilt antennas on our tower. The video above shows this process. It is quite something to see! The installation took about 3 1/2 hours.

Updated SteppIR Controllers

Updated SteppIR Controllers

The last step in the SteppIR DB36 rebuild process was to install the latest firmware in the associated SDA100 Antenna Controllers. There are some integration issues between the updated SteppIR Firmware and our microHAM system but we are getting those worked out with help from the folks at both SteppIR and microHAM.

Icom IC-7851 With Display Monitor

Icom IC-7851 With Display Monitor

I recently had a major birthday milestone and Anita surprised me with a new radio – an Icom IC-7851. This radio is an upgrade/replacement for our Icom IC-7800. While the two radios are quite similar in their operation and interfaces, I did not want to install the IC-7851 until the SteppIR antennas were reinstalled and all of their upgrades were working properly with our current radios. With the antennas done, it was the finally time to install the new radio!

Icom C-7851 Transceiver

Icom C-7851 Transceiver

The Icom IC-7851 has several important performance upgrades. The most impactful one is a new low phase noise oscillator which significantly improves RMDR performance compared to the IC-7800. The IC-7851 is in the top-tier of Transceivers in Sherwood Engineering’s tests. The receivers in the IC-7851 are very quiet, have excellent Dynamic Range and perform great in when close-in interference is present.

Icom IC-7851 Display Monitor

Icom IC-7851 Display Monitor

The Icom IC-7851 has a higher resolution and faster display. It also supports higher resolution external monitors so we installed am upgraded display monitor along with the new radio. The IC-7851 has a number of new networking features and supports stand-alone remote operation over a LAN and the Internet. We are planning to use these capabilities to add a second remote operating gateway to our station. More on this in a future article.

The combination of the rebuilt antennas and the new IC-7851 Transceiver has our station performing better than ever. The antennas are working as well or better than when they were new and the IC-7851 has significantly better receive performance compared to its predecessor and is a pleasure to use.

We will be hosting the ARRL Rookie Roundup RTTY contest for our club members who have received their first license in the last 3 years next weekend and we’re going to use the new radio and rebuilt antennas for the contest.

This project was completed in a little over two weeks and was a lot of work. I could not have done the project without the help of the many folks in the Nashua Area Radio Club. Again, a big Thank You to all the folks in our club who helped me with this project! I hope that many of you will be able to find some time to operate from our upgraded station.

73,

Fred, AB1OC