First Winter Field Day For The Nashua Area Radio Society

AB1OC Operating at Winter Field Day

AB1OC Operating at Winter Field Day

Source: Our First Winter Field Day – The Nashua Area Radio Society

The Nashua Area Radio Society participated in Winter Field Day for the first time this past weekend. We put up a 40 ft tower and we were QRV on all allowed bands from 160m through 2m and 70cm. Our station was a four transmitter one and we produced a great score during the 24-hour operating period. Winter Field Day presents some unique challenges that we did not encounter during Summer Field Day.

We put together a station for 160m for the first time as well as some other new things. You can read all about our approach to a station and operating for Winter Field Day via the link above.

Fred, AB1OC

Satellite Station 4.0 Part 3 – Antenna Integration and Testing

Satellite Antennas Off The Tower

Satellite Antennas Off The Tower

Sometimes we learn from problems and mistakes. We all go through this from time to time. It is part of the learning aspect of Amateur Radio. My most recent experience came while integrating our new tower-based satellite antenna system. After the antennas were up, initial testing revealed the following problems:

After an initial attempt to correct these problems with the antennas on the tower, we decided to take them down again to resolve the problems. The removal was enabled, in part, via rental of a 50 ft boom lift.

The lift made it relatively easy to remove the Satellite Antenna Assembly from the tower. We placed it on the Glen Martin Roof Tower stand that was built for the Portable Satellite Station 3.0. Once down, the Satellite Antenna System was completely disassembled and a replacement Alfa-Spid Az/El rotator was installed.

Cross Boom Truss System

Cross Boom Truss System

The photo above shows the reassembled cross boom and associated truss supports. Note the tilt in the truss tube on the left side. This allows the antennas to be flipped over 180 degrees without the truss contacting the mast.

Reinforcement Bushing

Reinforcement Bushing

As mentioned in the previous article, polycarbonate reinforcement bushings are installed in the fiberglass parts to prevent the clamps from crushing the tubes. The photo above shows one of the bushings installed at the end of one of the truss tubes.

Bushing Pin

Bushing Pin

The bushings are held in place with small machine screws. This ensures that they remain in the correct locations inside the fiberglass tubes.

Thorough Ground Test

Thorough Ground Test

With the Satellite Antenna Array back together and aligned, we took a few days to operate the system on the ground. This allowed me to adequately test everything to ensure that the system was working correctly.

Tower Integration Using Lift

Tower Integration Using A 50 ft Boom Lift

With the testing complete, the antennas went back up on the tower, and the integration and testing work resumed. Having the boom lift available made the remaining integration work much easier.

Control Cable Interconnect Boxes

Control Cable Interconnect Boxes On The Tower

There are quite a few control cables associated with the equipment on our new tower including:

A combination of junction boxes near the top of the tower and at the base make connecting and testing of the control circuits easier and more reliable. Tower mounted junction boxes were used to terminate the control cables near the rotators and antennas.

Control Cable Junction Box at Base of Tower

Control Cable Junction Box at Base of Tower

A combination of heavy-duty and standard 8 conductor control cable from DX Engineering was used for the cable runs from the top of the tower to a second junction box at the tower base.

Control Cable Junction Box Internals

Control Cable Junction Box Internals

The junction box at the base creates a single interconnect and testing point for all of the control cables. We’ve used this approach on both of our towers, and it makes things very easy when troubleshooting problems or making upgrades. Control cables for all of the tower systems were run to the temporary station set up in our house and terminated with connectors that are compatible with our Portable Satellite Station 3.0 system.

Satellite Preamp System

Satellite Preamp System

We built a tower mounted Preamplifier System for use with the egg beater satellite antennas on our 100 ft tower a while back. The Preamp System is being reused on our new tower. A set of Advanced Receiver Research 2m and 70cm preamplifiers are mounted in a NEMA enclosure to protect them from the weather and to make connecting the associated control cables easier.

Tower Mounted Preamp System

Tower Mounted Preamp System

The Preamp System was mounted near the top of the new tower and the feedlines from the 2m and 70 cm Satellite Antennas were connected to it. LMR-400uF coax is run from the Preamp System as well as from the Directive Systems DSE2324LYRM 23 cm Satellite Yagi and the M2 6M7JHVHD 6 m Yagi on our new tower to the station in our house to complete the feedlines. These LMR-400uF feedlines will be replaced with 7/8″ hardline coax to our shack in the spring when warmer weather makes working with the hardlines easier.

Temporary Station Setup

Temporary Station Setup

With all of the tower integration work done, we set up the station in our house for testing. This is the same station that is our Portable Satellite Station 3.0 with two additions:

Both of these additions will become part of the final Satellite Station 4.0 when it is is moved to a permanent home in our shack.

Rotator Controls

Rotator Controls

The rotator setup on the new tower provides two separate azimuth rotators. The lower one above turns both the 6 m Yagi and the Satellite Antenna Array together. The upper box controls the Alfa-Spid Az/El rotator for the satellite antennas. Using two separate rotators and controllers will allow us to integrate the 6m Yagi into the microHam system in our station and will allow the MacDoopler Satellite Tracking Software running on the iMac to control the Satellite Antennas separately. When we are using the 6 m Yagi, the Satellite Antennas will be parked pointing up to minimize any coupling with the 6 m Yagi. When we are using the Satellite Antennas, the rotator that turns the mast will be set to 0 degrees to ensure accurate azimuth pointing of the Satellite Antennas by the Alfa-Spid Az/El rotator.

PSK Reporter View using New 6 m Yagi

PSK Reporter View using the M2 6M7JHVHD 6 m Yagi

So how does it all perform? With WSJT-X setup on our iMac, I was able to do some testing with the new 6 m Yagi using FT8. The IC-9100 Transceiver that we are using can produce 100W with WSJT-X. The 6 m band is usually not very open here in New England in January so I was quite pleased with the results. As you can see from the PSKReporter snapshot above, the new antenna got out quite well on 6 m using 100W. I made several contacts during this opening including one with W5LDA in Oklahoma – a 1,400 mi contact. The 6M7JHVHD is a much quieter antenna on the receive side which helps to make more difficult contacts on 6 m.

MacDoppler Tracking AO-91

MacDoppler Tracking AO-91

We’ve made a little over 100 satellite contacts using the new system so far. With the satellite antennas at 45 feet, it’s much easier to make low-angle contacts and we can often continue QSOs down to elevation angles of 5 degrees or less. I have not had much of a chance to test 23 cm operation with AO-92 but I have heard my signal solidly in AO-92’s downlink using the L-band uplink on the new tower. This is a good sign as our IC-9100 has only 10W out on 23 cm and we are using almost 100 ft of LMR-400uF coax to feed our 23 cm antenna.

Satellite Grids Worked and Confirmed

Satellite Grids Worked and Confirmed

I’ve managed to work 10 new grid squares via satellites using the new antenna system including DX contacts with satellite operators in France, Germany, the United Kingdom, Italy, Spain, and Northern Ireland using AO-07 and FO-29. These were all low-angle passes.

So what did we learn from all of this? Due to concern over possible snow here in New England, I did not take the time to fully ground test the satellite antennas and new rotator before it went up on the tower the first time. My thinking was that the setup was the same as that used on Portable Satellite Station 3.0 for over a year. The problem was the replacement parts and new control cables were not tested previously and both of these created problems that were not discovered until the antennas were at 45 feet. While it would have made increased the risk that the antennas would not have gotten up before the first winter snow storm here, it would have been much better to run the antennas on the ground for a few days as I did the second time. Had I done this, both problems would have appeared and have been easily corrected.

The next step in our project will be to add transverters to our FlexRadio-6700 SDR and integrate the new antennas into our shack. You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Satellite Station 4.0 Part 2 – Antennas

Portable Satellite Station 3.0 Antennas

Portable Satellite Station 3.0 Antennas

Our current Satellite 3.0 Antennas have worked well in their portable configuration. We’ve had them to License Classes, Field Day, Ham Fests, and ultimately to Hudson Memorial School for the ISS Crew Contact there. As you can see from the photo above, the weight of the antennas causes the Fiberglass Cross Boom that we are using to sag and this is not a good situation for a permanent installation.

Cross Boom Truss Support Mock Up

Cross Boom Truss Support Mock-Up

I decided to work with Spencer Webb, W2SW who owns AntennaSys, Inc. and M2 Antenna Systems to create a stronger Cross Boom solution. M2 Antenna Systems came up with a set of brackets, fiberglass truss tubes, and a Phillystran Truss System to support the ends of their Fiberglass Cross Boom.

Spencer, W2SW Machining Parts

Spencer Webb, W2SW Machining Parts

The remaining problem to be solved was to reinforce the fiberglass tubes in the Cross Boom and Truss System to prevent the clamps which hold the antennas and other parts in place from crushing the fiberglass tubes. Spencer did an amazing job of making a new center section and polycarbonate reinforcing plugs to provide the needed reinforcements.

Cross Boom Reinforcement Parts

Fiberglass Tube Reinforcement Parts

Polycarbonate material was used to avoid adding metal inside the Cross Booms and Truss Tubes near the antennas. Using metal for these parts runs the risk of distorting the antenna’s patterns and causing SWR problems. It was also necessary to keep Truss System parts like eye bolts, turnbuckles, and clamps away from the tips of the antennas for the same reason. As you can see from the photo above, Spencer did an amazing job making the needed parts!

Checking Cross Boom Center Section Runout

Checking Cross Boom Center Section Run-out

The first step in rebuilding the Satellite Array was to install the new center section in our Alfa-Spid Az/El Rotator. I used a dial indicator to properly center the center section in the rotator. While this level of precision is probably not necessary, I had the tools available and it was easy to do.

Assembled Cross Boom Truss Support

Assembled Cross Boom Truss Support

The photo above shows one of the two completed Truss Supports. The trusses support the Cross Boom when it’s either pointing straight up or is flat at 0 degrees on the horizon. It’s important to adjust the horizon truss tube orientation to be slightly tilted to allow the antennas to operate in a “flipped over” configuration where the elevation points 180 instead of 0 degrees. This mode occurs in one of about every 5 to 10 satellite passes to avoid tracking problems with an otherwise south-facing dead spot in the azimuth rotator. Also, note the safety wire on the turnbuckles to keep them from turning after final adjustment.

Fiberglass Tube Reinforcing Bushings

Fiberglass Tube Reinforcing Bushings

You can see one of the polycarbonate reinforcing bushings at the end of the horizontal truss tube in the photo above. These are held in place with a small stainless steel set screw at the proper location in the fiberglass tubes. It’s also important to drill small drainage holes in all of the fiberglass pieces so that condensation and water seepage can drain out of the tubes. Without the drainage, water will accumulate, freeze, and break the tubes. I arranged these holes so that the tubes will drain when the antennas are parked in the vertical position.

Satellite Antenna Array Ready to Tram

Satellite Antenna Array Ready to Tram

With everything secured with a combination of tape and large cable ties, Matt of XX Towers rigged a suspension system and tram line to hoist the Satellite Array onto our tower. You can see how well-balanced the antenna system was prior to tramming.

Tramming The Satellite Antennas

Tramming The Satellite Antennas

The photo above shows the Satellite Array headed up the tram line. The tram line is anchored to a Gin Pole at the top of our tower and to a vehicle on the ground.

Satellite Antennas On The Mast

Satellite Antennas On The Mast

We removed the rotator and dropped the mast down into the tower to make it easier to get the satellite antennas in place on the top of the mast. Also, note the orientation of the Satellite Antennas – the elements are at 45 degrees to the Cross Boom. This arrangement helps to keep the metal in the ends of the Truss System from getting close to the antenna element tips.

Satellite Antennas Installed On Top Of Mast

Satellite Antennas Installed On Top Of Mast

Here’s a final photo of the Satellite Antennas with the mast pushed up and the lower rotator back in the tower. You can also see the rigging of the rotator loops for the Satellite Antennas and both the vertical and horizontal Cross Boom Truss supports in place.

M2 6M7JHV HD 6 Meter Yagi

M2 6M7JHV HD 6 Meter Yagi

The last step in this part of our project was to place the assembled M2 6M7JHV HD 6 Meter Yagi onto the mast. The 6M7JHV features 7 elements on a 36′ – 8″ boom. The antenna has about 13 dBi of gain and is optimized with a clean pattern to suppress noise from unwanted directions. The antenna was trammed up the tower with a light rope.

Completed Antenna Stack On New Tower

Completed Antenna Stack

The picture above shows the completed antenna installation including a second rotator loop around the 6m antenna. The system has two azimuth rotators – one the turns just the Satellite Antennas at the top and a second that turns all of the antennas on the mast together. Our plan is to set the lower rotator to 0 degrees when operating with satellites and use the upper Alfa-Spid Rotator for Azimuth and Elevation positioning. The lower rotator will be used to turn the 6m yagi with the Satellite Antennas parked.

The next step of our project will be to install all of the control cables, satellite receive preamplifiers, and feed lines on the tower and test our new antenna system with the rest of our Satellite Station. You can read about other parts of our project via the links below.

Fred, AB1OC

 

Satellite Station 4.0 Part 1 – New Tower

New Satellite and 6m Tower

New Satellite and 6m Tower

Our plans for Satellite Station 4.0 are based, in part, on the idea that we can extend our current remote operating environment to include Satellite Operations. Now that our ISS Crew Contact is complete, the antennas from the current Satellite Station 3.0 can be permanently installed at our QTH.

Tower Footing

Tower Footing

The first step in the project is to put up a second, 35′ house bracketed tower. Our new tower will also feature a new 6m yagi along with a permanent installation of our Satellite 3.0 Antennas. The first step in the project was to secure a building permit and prepare the footing for our new tower. Using Rohn’s specifications for the 45G Tower that we are using calls for the first section of the tower to be placed 4′ below ground in a concrete form. It’s important to place a foot or so of stone at the base of the footing and to ensure that the legs of the tower remain open so water can train. Failure to do this part of the preparation properly will result in water freezing in the Tower Legs which will split them open and ruin the tower.

Also, note the rebar reinforcing material in the hole around the tower and the bracing to keep the first section of the tower level and plumb. The folks at Form King did an excellent job in preparing and pouring the footing for our new tower.

Tower Base

Tower Base

The picture above shows the completed tower base. We’ve also installed a lightning ground on each of the three legs of the tower and the ground are bonded to each other and to the rest of our station’s ground system.

Tower Section on Gin Pole

Tower Section on Gin Pole

With the base complete, Andrew and Matt from XX Towers helped me to put the tower up. Here Andrew is using a Gin Pole to hoist a section of the 45G Tower into place.

House Bracket

House Bracket

With a few sections of the tower in place, it was time to install the house bracket. The bracket needs to be reinforced with blocking material on both sides of the wall. The blocking and the bracket are held to together with 10″ galvanized bolts.

Rotator and Mast

Rotator and Mast

We chose a 2″ x 25′ Chrome Molly Mast for our tower. We wanted to have about 10′ of mast above the top of the tower. Rather than cut the mast, we choose to keep the mast full length by setting our M2 Orion Rotator down a section and a half from the top of the tower. This is a good thing to do for several reasons. First, it makes the rotator easier to access for service. Also, the mast can twist a bit to absorb the torque on the rotator when the antennas start and stop moving.

The combination of the 25′ tower and the 10′ of mast above top will place our Satellite Antennas at a height of about 45′. This will provide additional clearance above the trees in our backyard for low angle satellite contacts.

The next step in our project will be to rebuild and reinforce the Satellite 3.0 Antenna Cross Boom and rotator system, build our new 6m yagi, and install the antennas on our new tower. You can read about other parts of our project via the links below.

Fred, AB1OC

Meteor Scatter Rocks! – Work’in the Orionids

AB1OC 6m USA Grids

AB1OC 6m USA Grids

I’ve been pretty active on the 6m band the past few years. As you can see from the image above, we’ve worked most of the grid squares in the eastern third of the United States on 6m. I use a mix of modes on 6m including SSB Phone, CW, JT65, FT8, and MSK144. The addition of the MSK144 mode for Meteor Scatter contacts has been a lot of fun and has added some new grid squares to my total.

Orionid Meteor Shower Forecast

Orionid Meteor Shower Forecast

One of the fall Meteor Showers, the Orionids, occurred not too long ago and I decided to focus on MSK144 during the Orionids to see how many grid squares I could work. The shower mast most active over a 3-day period (Friday, Saturday, and Sunday).

MSK144 QSO with WA3LBI Using WSJT-X

MSK144 QSO with WA3LBI Using WSJT-X

The latest WSJT-X software supports a relatively new digital mode for Meteor Scatter contacts – MSK144. A Meteor Scatter contact made using MSK144 is shown above.

Meteor Scatter Pings Detected via MSK144

Meteor Scatter Pings Detected via MSK144

Meteors create short propagation enhancements when they burn up in the atmosphere. These short propagation bursts enable very brief (approximately 1-5 second) propagation on the 6m band.

The video above shows an example of an MSK144 Meteor Scatter QSO using WSJT-X.

6m MSK144 QSOs During Orionids

6m MSK144 QSOs During Orionids

So I bet you may be wondering how many 6m QSOs and grid squares was I able to work during the Orionids? I made a total of 23 Meteor Scatter QSOs using MSK144 during the 2017 Orionids. The image above shows the 16 grids that were worked using MSK144 during the three-day period. A few of these grids were new for me on 6m.

I used our Flex-6700 SDR, our SteppIR Yagis, and about 200w of power to make these contacts. It was a lot of fun making contacts using MSK144 Meteor Scatter on 6m. I am looking forward to future Meteor Shower activity!

Fred, AB1OC

Orionid Meteor Shower: Friday Night Brings Excellent Conditions In Eastern US

Orionid Meteor Shower Forecast

Orionid Meteor Shower Forecast

One of the best meteor showers of the fall, the Orionid Meteor Shower, will peak on Friday night with over a dozen meteors streaking across the night sky every hour.

Source: Orionid meteor shower: Friday night to bring excellent viewing conditions in the Eastern US.

It looks like this weekend is going to be a good time to work Meteor Scatter contacts on 6m! The Orionid’s peak tonight (Friday) and tomorrow (Saturday) night, October 20th and 21st. We’ll be operating using WSJT-X MSK144 mode on 6m. We are planning to use our Remote Operating setup to take advantage of our SDR’s receiver capabilities and the connected 500w amplifier.

Fred, AB1OC