RSU 21 Students to Communicate to Outer Space – Portland Press Herald

Ann Stockbridge, Educator at Kennebunk’s Sea Road School

Ann Stockbridge, Educator at Kennebunk’s Sea Road School

Regional School Unit 21 has been selected for an out-of-this-world opportunity. An international association of space agencies and Amateur Radio organizations has chosen RSU 21, represented by Sea Road School, to advance in a process climaxing in a conversation between students and astronauts aboard the International Space Station (ISS).

RSU 21 was one of 10 schools selected nationally to continue through the multi-month acceptance process. The contact event with the ISS could occur between July and December of this year.

The opportunity is provided by ARISS (Amateur Radio on the International Space Station), an association that includes NASA, the Center for the Advancement of Science in Space, the American Radio Relay League, the Radio Amateur Satellite Corporation, and space agencies in Canada, Japan, Europe, and Russia. They collaborate to enable students to communicate with ISS astronauts and help inspire interest in space, communications and STEM coursework.

Source: RSU 21 students to communicate to outer space – Portland Press Herald

As our readers may know, I have joined the ARISS program as a Mentor to help schools prepare for and make successful contacts with Astronauts on the International Space Station. I am working with Regional School Unit 21 Sea Road School teachers and local Ham Radio folks in Maine, USA to help them make contact with the ISS during 2H2020. The link above shares more about the STEM learning program that is being created around this contact.

Fred, AB1OC

Winter Field Day 2020 Final Station Test

Source: Winter Field Day 2020 Final Station Test – Nashua Area Radio Society

Winter Field Day 2020 is almost here! A few weekends ago, several of us got our QTH to complete the final station test for our planned 5O operation in Winter Field Day (WFD). Activities including setup and testing of a new, Portable Networking Pod and three of our five planned Winter Field Day stations. We are planning to use the N1MM+ Logger in a networked configuration this year…

This article covers equipment and networking aspects of the Nashua Area Radio Society’s planned 5O setup for Winter Field Day 2020. All of our stations will use the N1MM+ Logger to support SSB Voice, CW, and Digital modes.

Fred, AB1OC

December 2019 ISS SSTV Event

Source: December 2019 ISS SSTV Event – Nashua Area Radio Society

Slow-Scan TV from the International Space Station (ISS) was on the air again late in December 2019.  The ISS SSTV event was in memory of cosmonaut Alexei Leonov. We had our satellite station running to track the ISS and capture the SSTV images during the event. It’s pretty easy to receive these images – it can be done with an HT, hand-held antenna, and a laptop…

This article includes a gallery of the images that we received during the December 2019 ISS SSTV event and some how-to information that you can use to receive SSTV images from the ISS with just an HT and a handheld antenna.

Anita, AB1QB and Fred, AB1OC

An Amazing Experience – Council Rock HS South ISS Contact

Council Rock South Students Contact the ISS

Council Rock South Students Contact the ISS

Its been about a year since we helped students at Hudson Memorial School make contact with the ISS. That contact was enabled by ARISS (Amateur Radio on the International Space Station). ARISS is an organization that coordinates and sponsors Amateur Radio Activities aboard the ISS.

After our contact, I decided to become an ARISS Mentor so I could help other schools make contacts with astronauts aboard the ISS. I spent the last year working with Dave Jordan, AA4KN to learn how the ARISS program works and how to help schools make successful ISS contacts. Dave did a great job coaching me as I worked with Council Rock H.S. South in Holland, PA to prepare for their ISS Contact…

Source: An Amazing Experience – Council Rock HS South ISS Contact

I recently had the privilege of helping Council Rock H.S. South in Holland, PA to make contact with astronaut Drew Morgan on the ISS. The link above shares the story of this amazing experience and my journey to become an ARISS Mentor. The article also contains videos and photos that capture and share the experience. I hope that you enjoy it!

Fred, AB1OC
ARISS Mentor

Listen In On The Council Rock ARISS Contact on Thursday!

International Space Station (ISS)

International Space Station (ISS)

Students at Council Rock High School South in Southampton, PA will be talking with Astronaut Drew Morgan, KI5AAA aboard the ISS on Thursday. The ISS will be over our area here in the Northeastern Unit States beginning at about 12:55 pm eastern time on Thursday, December 5th. Council Rock’s ARISS Contact is made possible by the ARISS Program

Source: Listen In On The Council Rock ARISS Contact on Thursday!

You should be able to hear Drew on the ISS voice downlink at 145.800 MHz FM. The ISS pass will be a high one over our area. As a result, we should be able to hear the downlink using a good vertical antenna and perhaps even using an HT.

You can join the Council Rock Facebook Group for updates and watch a live stream of the contact on Thursday between 12:30 – 1:30 pm.

I am serving as the ARRIS Mentor for Council Rock H.S. South’s ISS Contact. I am looking forward to the opportunity to be at their school on Thursday to be part of what I am sure will be a very memorable event.

You can learn more about the ARISS Program and how to secure an ISS contact for your school here.

Fred, AB1OC

EME Station 2.0 Part 5 – Control Cables and Rotator Controller

Control Cable Junction Box on EME Tower

Control Cable Junction Box on EME Tower

Snow is coming to New England this weekend so we wanted to get the control cables run to our new EME Tower before the ground is covered with snow. The project involved installing a Utility Enclosure on our tower and running three control cables to our shack for the following devices:

Az-El Rotor and Preamp Switching Control Connections

Az-El Rotator and Preamp Switching Control Connections

We began by install some barrier strips and a copper ground strap in the Utility Enclosure. The copper strap provides a good ground connection to the tower and associated grounding system. The enclosure is clamped to the tower using two stainless steel clamps.

We ran three new control cables through the conduits that we installed between the tower and our shack and terminated them in the utility enclosure. We only needed 6 leads for control of the planned MAP65 Switching and Preamp System which will go on our tower later so we doubled up some of the higher current connections using two wires in the 8-conductor cable.

Green Heron RT-21 Az-El Rotator Controller

Green Heron RT-21 Az-El Rotator Controller

The final step was to hook up our rotator cables to a Green Heron RT-21 Az/El Rotator Controller in our shack.  We do not yet have our elevation rotator so we tested the M2 Orion 2800 Azimuth Rotator that is installed in our tower. The azimuth rotator is configured so that the rotator’s dead spot faces north. This is a good configuration of our planned EME operation.

With all of our control cabling in place, we are ready to begin preparing our Antennas, Elevation Rotator, H-Frame, and MAP65 components to go on our EME Tower. We’re hoping that the weather will cooperate and enable us to get these steps completed during this winter.

Here are some links to other articles in our series about our EME Station 2.0 project:

Fred, AB1OC

Winter Field Day VHF+ Preparations

Jamey AC1DC with Completed WFD VHF+ Mast

Jamey AC1DC with Completed WFD VHF+ Mast

We are continuing to make progress on our preparation for VHF+ Operations at Winter Field Day (WFD) 2020. We had a lot of fun on the VHF+ bands at WFD 2019 and we are planning to add some more bands for our operation this year. We’ve assembled a portable mast system to put us on 3 new bands…

Source: Winter Field Day VHF+ Preparations – Nashua Area Radio Society

We’ve been busy with preparation for Winter Field Day 2020. My part of this project is to increase our participation in operations on the VHF+ bands (6m and above). We are accomplishing this with a 30 ft push-up mast, some new antennas, and using Transverters for the 1.25m and 33cm bands. You can read more about our preparations and the equipment that we will be using on the VHF+ bands via the link above.

Fred, AB1OC

Nashua Area Radio Society Featured on HamNation

The Nashua Area Radio Society’s activities and projects were featured on HamNation last evening (Wednesday, November 27th). Bob Heil’s, K9EID interview covered activities and projects of the Nashua Area Radio Society.  The interview began with Bob sharing a clip from a previous episode that we did a while back… →

Source: Nashua Area Radio Society Featured on HamNation

Anita, AB1QB and I did a segment on HamNation last evening (Wednesday, November 27th, 2019). We spoke about the work that The Nashua Area Radio Society is doing to bring new Hams into the Amateur Radio Service and to provide skills development for all Hams. You can view our interview on HamNation below.

Ham Nation Episode 430 Featuring The Nashua Area Radio Society

Fred, AB1OC

EME Station 2.0 Part 4 – New EME Tower Is Complete

Three Tower Antenna Farm

New EME Tower in Our Antenna Farm

Our goal for this phase of our EME Station Project is to get our new tower up, install the Azimuth Rotator and Mast, and run the hardline and coax cables for our antennas from the shack to our new tower. Our EME tower is constructed using Rohn 55G tower sections. It will be 26 ft tall and will have approximately 18″ of our 3″ mast protruding above the tower. The tower is a free-standing/guyed hybrid design with the first section being cemented into the ground.

EME Tower

FInished Tower Base

The base section and the three guy anchor blocks were completed a little while back. The holes were backfilled and we’ve given the cement a couple of weeks to cure.

First Tower Section Installed Using a Gin Pole

First Tower Section Installed Using a Gin Pole

Matt, KC1XX, and Andrew of XX Towers began by installing a winch and a gin pole on the base section of the tower. They used the Gin Pole to hoist the second tower section into place and secure it. They also attached the top plate to the third tower section in preparation for installing it along with our mast.

Mast and Top Tower Section Going Up

Mast and Top Tower Section Going Up

It is always a challenge to install a mast inside a new tower. The mast we are using is a heavy, 22 ft 4130 chrome molly steel mast that weighs over 250 lbs. Getting the mast inside the tower was quite a feat! Matt and Andrew rigged the top tower section and the mast together and pulled both up together on the Gin Pole. Next, one leg of the top tower section was attached and a second pully was used to pull the mast up through the top tower section until it could be placed inside the tower. The last step was to raise the top tower section a second time using the Gin Pole to seat it on top of the rest of the tower. Finally, the mast was lowered inside the tower to the base and the top tower section was bolted on to complete the tower.

Upper Guy Anchor Bracket on Tower

Upper Guy Anchor Bracket on Tower

The next step involved attaching the upper guy anchor bracket to the top section of the tower and rigging the guy anchor cables. We decided to use Phillystran Guy Cable to avoid interactions with our antennas.

Guy Anchor Cable

Guy Anchor Cable

The completed cables are tensioned using turnbuckles. We adjusted the cables to plumb the tower and then safety-wired the turnbuckles so they will not come loose.

Azimuth Rototor in Tower

Azimuth Rotator in Tower

The next step was to install an M2 Antenna Systems Orion 2800G2 Azimuth Rotator in our tower. The use of the 22 ft mast allowed us to place the rotator about 5 ft above the ground where we can easily service it in the future. The long mast also acts as a torque shock absorber when the rotator starts or stops moving suddenly. With the rotator in place, we attached the mast and clamped it at the rotator and thrust bearing at the top of the tower.

Tower Base, Coax Feedlines, and Guy Anchors

Tower Base, Coax Feedlines, and Guy Anchors

The last step in our project was to install our coax cables and hardlines on the tower and run them through a 4″ underground conduit to our shack. We pre-made the two LMR-600 coax cables for the receive side of our EME Antenna System previously. We cut a section of LDF5-50A 7/8″ Hardline to approximately the same length as the LMR-600 coax cables.

Pushing Coax Cables and Hardline Through the Condui

Pushing Coax Cables and Hardline Through the Conduit

We used a cutoff plastic bottle to protect the ends of the coax cables and hardline as we pushed them through approximately 50 ft of buried 4″ conduit. The conduits were constructed to create a gradual turn into and out of the ground and the cables went into the conduit smoothly.

Coax Cables Exiting the Conduit Near Our Shack

Coax Cables Exiting the Conduit Near Our Shack

With the cables in place, we installed N-female connectors on each end of the 7/8″ hardline. We used rubber reducers to make it easier to deter water from entering the conduits where the cables exit.

Coax Cable Ground Block Connections

Coax Cable Ground Block Connections

We expanded out main shack entry ground block using an 18 position tinned cover ground bar from Storm Copper to make room for additional static arrestors for our EME Antenna System. The LMR-600 receive-side coax cables and the 7/8″ hardline connection for the transmit-side of our EME antennas terminate on N-connector Static Arrestors from Alpha Delta.

Completed EME Tower

Completed EME Tower

Our new EME tower is complete and ready to accept the Elevation Rotator, H-Frame, and Antennas from M2 Antenna Systems when they arrive. We plan to complete the grounding system and get the Azimuth Rotator hooked up and tested with our Green Heron Engineering RT-21 Az/El Rotator Controller in the near future.

Here are some links to other articles in our series about our EME Station 2.0 project:

Fred, AB1OC

EME Station 2.0 Part 3 – Phase Tuned Receive Coax Cables

Measuring Coax Cable Electrical Length Using a VNA

Measuring Coax Cable Electrical Length Using a Vector Network Analyzer (VNA)

Our new 2M EME station will have Adaptive Polarity capability via MAP65. MAP65 requires that received signals from the Horizontal and Vertical planes of our antennas arrive at the receivers in our shack precisely in phase with each other.

We decided to use a pair of LMR-600 coax cables for the receive side of our feedlines. We made these cables from an unterminated length of LMR-600 coax measured to cover the distance from the top of our planned 26 ft EME tower to the ground block at the entry to our shack. The cables are approximately 82 ft long and they must be cut to be equal in length to with 1/16″!

The easiest way to measure the length of an unterminated coax cable is to determine the minimum frequency of resonance of the cable when the opposite end is an open circuit. One can then use the speed of light and the velocity factor of the cable to compute its exact length:

Length = (Speed of Light X Velocity Factor) / (Resonant Freq. X 4)

Doing these measurements with an open circuit at the far end of the cables enables trimming the length of the two cables to be matched in small increments until our two cables are exactly the same length.

VNA Measurement of Open Coax Cable Resonance

Vector Network Analyzer (VNA) Measurement of Open Coax Cable Resonance

We used an Array Solutions VNA 2180 connected to a Windows PC to precisely measure the minimum Resonant Frequency of our LMR-600 coax cables as we trimmed them. Once they were equal in length to within 1/16″, we installed an N-Female connector on the unterminated end and re-verified each cable’s length. A frequency accurate antenna analyzer can also be used to make these measurements.

We will need to repeat these steps of the receiver-end and antenna preamp box jumper cables which will make up the rest of the receive side feedlines for our EME antenna system once these components are installed. We also plan to make a final end-to-end measurement of the receive-side feedline assemblies to fine-tune the phasing of the completed feedline runs.

With this step complete, we are ready to put up our new tower and attach the feedlines.

Here are some links to other articles in our series about our EME Station 2.0 project:

Fred, AB1OC