Satellite Contact at Sussex County Charter School for Technology
It is vitally important that we make efforts to bring Amateur Radio to young people in schools and other venues. When we spend time bringing Amateur Radio to young people, we accomplish two important things. First, we have the potential to change a young person’s life for the better by involving them in Amateur Radio, a hobby and a service that inspires a lifetime of STEM learning and often leads to lifelong careers in Science or Engineering.
Secondly, our work in schools is one of the very best ways that we can make the general public aware of the positive benefits that Amateur Radio provides to their kids and to the general public…
In my role as an ARISS Program Mentor, I recently had the pleasure of spending a week with Sussex County Charter School for Technology students and teachers to help teachers there to deliver their summer Radio Camp.
The summer Radio Camp was a STEM education program that the school developed in support of their upcoming contact with an astronaut on the International Space Station (ISS). Members of the local Sussex County Amateur Radio Club teamed with the teachers at the school to deliver a 5-day program grounded in STEM learning through Amateur Radio.
You can read more about the activities that we did at the week-long summer Radio Camp via the link above.
We are holding an in-person Field Day operation at Keyes Memorial Park in Milford, NH. Here’s some more on our plans for Field Day 2021. We’d like to invite you to join us…
I’d like to invite our friends here on our Blog to visit us during Field Day on Saturday, June 26th, and Sunday, June 27th. We will be at Keyes Memorial Park in Milford, NH.
Testing Our Field Day Satellite Station
We will have a Tower up with a Triband Yagi and we’ll have our computer-controlled portable satellite station at Field Day.
6m LFA Antenna for Field Day
We’ll also have a new LFA Yagi for the 6m Band. We will be a 4A station with a total of 5 Transmitters on the air. Our stations will be equipped for SSB Phone, CW, and FT8/FT4 Digital modes.
We’ll also be doing training sessions on Satellite Operations, FT8 Digital on 6m, and Fox Hunting at 12:30 pm on Saturday, June 26th. If you have an HT, bring it and you can use it to hunt our foxes. We’ll also have HTs available for folks to use for Fox Hunting.
We had some time over the weekend so we ran some Satellite Pass Predictions for Field Day 2021 for our Grid Square which is FN42. As you can see, we are going to have a lot of fun working satellite during Field Day! Field Day rules limit us to a single FM EasySat contact using but we can work as many contacts via Linear Transponder Satellites as we wish
Field Day Satellite Station
We recently set up and tested our Portable Satellite Ground station here at our QTH and it’s working great! It has produced some good DX contacts into Europe from New Hampshire, USA during the past week.
The Nashua Area Radio Society will be using our portable Satellite Station this year at Summer Field Day. A number of members got together recently to assemble and test our Computer-Controlled Portable Satellite Station for Field Day. Here are some pictures of our Field Day Satellite Station Test…
Several members of the Nashua Area Radio Society got together to set up and test our Portable Satellite Station for Field Day 2021. Our station is a computer-controlled one and enables us to work FM and Linear Satellites using phone mode and CW.
You can see how the portable station goes together in the article above. You can learn more about the design and construction of our Portable Sation from the series of articles that begins here. We hope to work some of our readers on the birds during Field Day this year!
February 2021 Tech Night – Understanding and Using Radio Propagation to Work The World
Anita, AB1QB, recently did a Tech Night Program on Radio Propagation as part of the Nashua Area Radio Society’s Tech Night program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about propagation and how to use it to facilitate contacts.
Anita, AB1QB provides a comprehensive overview of HF and VHF/UHF propagation and how to use it to Work the World. Topics include the many online tools to help one determine and measure propagation conditions. VHF+ modes such as Meteor Scatter, Tropo, EME, and Satellite paths are also covered.
We’ve been making good use of our Satellite Ground Station. Our existing 2MCP14 and 436CP30 antennas have enabled us to make over 2,000 satellite contacts; working 49 of the 50 U.S. States, 290+ Grid Squares, and 31 DXCCs. Our station is also an ARISS Ground Station which enables us to help Schools around the world talk to astronauts on the ISS.
As you can tell, we are pretty active on Satellites so we decided to take our station up a level by upgrading our antennas. We choose the 2MCP22 and 436CP42UG antennas from M2 Antenna Systems with optional remote polarity switches. These are larger yagis with booms over 18+ ft in length. The upgrade required us to improve the mechanical aspects of our Satellite Antenna System as well.
Antenna Assembly
2MCP22 Parts Inventory
The first step in the project was to unpack and carefully inventory all of the parts for each antenna. This included carefully presorting and marking each element as we did during the assembly of our EME antennas.
2MCP22 Completed Antenna
The new antennas are quite large and they took most of the available space in our workshop during assembly. Getting good results from any antenna is all about attention to the details. Small things like turning the boom sections to get a good alignment of the elements, using NOALOX on the boom sections and hardware to prevent corrosion and galling, carefully measuring and centering the elements, etc. are all good things to do.
2MCP22 Feedpoint Assembly including Polarity Switch Upgrade
The feedpoint system on these circular polarized antennas requires careful attention during assembly. It’s important to install drive element blocks, shorting bars, polarity switches, feedpoint splitters, and all phasing lines EXACTLY as shown in the antenna assembly manual. Failure to do these steps will likely results in SWR problems down the road.
436CP42UG Feedpoint Assembly
The images above show the feedpoint assemblies for both of our new antennas.
New Satellite Yagis Ready For Installation
A rough SWR measurement with the antennas on the ground was performed to check for assembly errors. It’s a good idea to use a 12V battery to test the antenna SWR’s in both RHCP and LHCP. These tests checked out fine and we are ready to begin installing the antennas on our Tower.
Old Antenna Takedown and Work Stand
Old Antenna Assembly Takedown Using Boom Lift
The next step in the installation was to take down our existing antennas. We rented a 50 ft Boom Lift for the project. The lift makes the work much easier and safer.
Old Antennas on Test Stand
We have a ground tower that we use for portable satellite operations. It was fitted with a longer mast to create clearance for our larger antennas. We lowered the existing antenna system onto the ground tower for disassembly, installation, and testing of our new antennas.
It’s important to fully test a complex antenna system like this on the ground prior to installation on a Tower. We have routinely found and corrected problems this way. This approach also enabled us to properly adjust our cross boom and antenna support trusses and balance the final assembly properly. All of the required adjustments are MUCH easier with the antennas on the ground.
We also run our rotators under computer control for at least one full day before installing the completed assembly on our Tower. We have consistently found and corrected problems with cabling and balance this way.
Antenna Mounting and Trussing
2MCP22 Boom Truss
The new antennas have very long booms (approximately 18 ft) and they have a tendency to sag. Add the ice and snow load that we experience here in New England and you end up with quite a bit of stress on the booms over time. Robert at M2 Antenna Systems came up with a custom truss assembly for our installation to address this problem. It’s important to minimize any metal in a setup like this to avoid distortion of the antenna patterns. The trusses use a solid fiberglass rod and small turnbuckles to support the ends of each antenna boom. There is much more weight on the rear of the booms due to the weight of the attached coax cables and polarity switches. For this reason, we located the truss anchor point for the rear of the boom such that it creates a sharper angle for the truss ropes at that end of the truss. This reduces the compression load on the rear of the boom and enables the truss to better carry the weight at the back of the antenna.
436CP42UG Boom Truss
Installing a truss on the 70cm yagi is much trickier due to the tight pattern of this antenna. We minimized the added metal components by drilling the antenna boom to mount the truss plate directly to the boom via bolts.
We relocated the boom support plates on both antennas as far to the rear of the largest boom sections as possible to improve overall antenna balance. The clamps were also adjusted to change the orientation of the elements from vertical/horizontal to a 45-degree X arrangement. This maximizes the separation between the element tips and other metal components like the cross boom and truss plates.
Tubing Drill Guide
All of this required drilling some new holes in our antenna booms. We used a Tubing Drill Guide and C-clamps to perform the required drilling operations accurately.
Satellite Antenna Boom Assembly
The photo above shows the new antennas mounted on our cross boom. The modifications worked out great resulting in well supported and aligned antennas on the cross boom.
Balancing The Array
Cross Boom Counterweight and Trusses
It’s very important to properly balance any antenna assembly that is used with an elevation rotator. Failure to do this will usually result in the failure of your elevation rotator in a short period of time. We initially had some pretty major balance problems with our new antennas. This is due, in part, to the weight of coax cables that run from the antenna feed points along the L-Brace Assemblies. The added weight of the Polarity Switches near the rear of the booms was also a significant contributor to this problem.
We created a counterweight by replacing one of our cross boom truss tubes with a metal section of pipe about 4 ft long. The pipe acts as a counterweight to the weight of the coaxes, etc.
Wheel Weights Used for Balancing
Next, we added 4 1/2 pounds of weights to the front on the metal pipe. We used several layers of Wheel Weights built up in multiple layers to get the necessary counterweight. A heavy layer of electrical tape and some large cable ties were used to ensure that the weights say in place.
This got us close to a good balance but the boom of the 2MCP22 was still significantly out of balance. Matt at XX-Towers came up with a good solution to this problem. We added a few strips of wheel weights inside the very front of the boom of the 2MCP22 to finally get the antennas balanced. A combination of the adhesive tape on the weights and two small machine screws through the boom ensures that the weights remain in place and do not short the elements to the boom.
Finally, we adjusted our Green Heron RT-21 Az/El Rotator Controller to slow down the ramps for the rotator. Final testing indicated the smooth operation of the rotator at slow speeds.
SWR Testing and Baseline
2MCP22 Installed SWR
A final check and baseline of all of our antennas were made on the ground. Both RCHP and LHCP modes were checked and recorded for future reference.
432CP42UG Installed SWR
We found that some fine-tuning of the locations and routing of the phasing lines on our 436CP42UG improved the SWR curves. This is a common situation and it’s well worth the time to make small adjustments while carefully observing how they impact your SWR readings. The phasing cables are firmly secured to the antenna boom after the fine-tuning is complete.
New Antenna Installation and Integration on Tower
Upgraded Antennas Going On Tower
The next step in our project was to install the updated antenna assembly back on our Tower. We had to push the lower rotator and mast up about 4 ft to accommodate the larger antennas. We removed our 6M7JHVHD Yagi and temporarily fastened it to the side of our tower to make these steps easier. We also took the opportunity to work on our 6M7JHVHD Antenna to adjust the length of the Driven Element for better SWR performance in the FT8 and MSK144 section of the 6m band.
Satellite Tower Infrastructure and Accessories
There is quite a bit of feed line and control cabling involved in a complex antenna system such as ours. The next step in the project was to reconnect all of the cables and coax feedlines.
Control Cable Junction Box at the Base of VHF Tower
We use small junction boxes on our tower and a larger one at our tower base to make it easy to remove and reinstall all of the required control cables. Our approach was to hook up and test the rotators first to ensure that we did not have any new mechanical or balance problems. This step checked out fine. The stiffer chrome molly mast and its added length actually resulted in smoother operation of rotators than we saw during ground testing.
The final step was to work through the other control cables and feed line connections; testing each connection as we went. The Boom Lift makes this work much easier to do.
We took advantage of the availability of the Boom Lift and added some additional enhancements to our VHF Tower. Previously. changing the battery in our Weather Station involved climbing our main tower to 50 ft. We moved the weather station to the 30 ft level on our VHF tower to make this maintenance step easier.
We also added an ADS-B antenna and feedline for the Raspberry Pi FlightAware tracker in our Shack. The parts that we used for the ADS-B antenna include:
Initial testing of our new antennas is showing some major improvements. The uplink power required to work LEO satellites has been reduced significantly. As an example, I have worked stations using the RS-44 Linear Satellite with just 0.4 watts of uplink power out of our Satellite IC-9700. The signal reports we’ve received have been excellent as well.
More About Our Ground Station
Here are links to some additional posts about our Satellite Ground Stations:
Tech Night – VHF+ Weak Signal Stations Part 1 – Overview and 6 Meters
We recently did a Tech Night on building and operating VHF+ stations as part of the Nashua Area Radio Society’s educational program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to get started and build their own VHF+ Weak Signal Station.
There is a lot to this topic so we’re going to cover it with two Tech Night presentations. The first one in the series is included here and it provides an Introduction to the VHF+ topic along with details on building and operating a station for the 6 Meter Band.
July 2020 Tech Night Video – VHF+ Weak Signal Stations Part 1 – Introduction and 6 Meters
We have built a number of stations and antennas for the VHF+ Bands (6 Meters and above). Here are some links to articles about those projects and our operations on the VHF+ Bands here on our Blog:
6m Yagi and 2m/70cm/23cm Satellite Antennas On A Tower
We will be hosting a Tech Night about Building and Operating a VHF+ Weak-Signal Station tonight, July 14th at 7 pm Eastern Time. The live, interactive video of our tech Night will be shared via a Zoom conference and all of our readers are welcome to join. I plan to cover the following topics during our session this evening:
Why do weak-signal work on 6 meters and above?
What can you work and what modes are used on these bands
How does propagation work at 50 Mhz and above and how can you measure it?
How does one operate using SSB, CW, and digital modes on these bands?
What equipment is needed and what are some possible ways that you can put together a VHF+ station?
Some demonstration of actual contacts
In addition to an overview of how to get on all of the bands above 50 MHz, we will focus on the 6 Meter (Magic) band. The session will include demonstrations of FT8 and Meteor Scatter contacts on 6 m. I will also briefly describe the 6 m station here at AB1OC-AB1QB and show how we use it to make contacts. A second Tech Night will cover stations and weak-signal operating on 2 m and above.
The Zoom information for our Tech Night Session follows. We suggest that you join early so that you have a chance to make sure that your computer, speakers, microphone, and camera are working.
July 14th, 7 pm Eastern – Nashua Area Radio Society Tech Night. Fred, AB1OC Setting up a VHF+ Station. Here’s an opportunity to learn how to add 6 m and above weak-signal modes to your station. Join Our Zoom Meeting
The AO-27 FM satellite is back on the air! AO-27 is an FM V/U Mode satellite that was launched back in 1993. The satellite’s Amateur Radio payload became inoperative about 7 years ago due to an internal communications failure. Thanks to some great work by Micheal, N3UC, who was one of this satellite’s original designers, the satellite is back on the air on a limited-time basis (4 minutes, twice per orbit over the mid-latitudes).
I was able to make my first contact through AO-27 this morning. The contact was with AI9IN in Indiana, USA. I’m looking forward to making more contacts using this satellite in the near future. Here are the current frequencies for the uplink and downlink (no PL tone is required):
Uplink – 145.850 MHz FM
Downlink – 436.7975 MHz FM
It’s great to have yet another FM satellite we can all use. I hope that other satellite operators will give AO-27 a try.
We get quite a few requests from folks to explain how to get started with Amateur Radio Satellites. Requests for information on how to build a computer-controlled ground station for Linear Satellites are also pretty common. I recently got such a request from our CWA class so I decided to put together a session on this topic.
We covered a number of topics and demonstrations during the session including:
How to put together a simple station and work FM EasySats with HTs and a handheld antenna
A recorded demonstration of some contacts using FM EasySats
How-to build a computer-controlled station and work Linear Transponder Satellites
Fixed and Portable Satellite Station Antenna options
A recorded demonstration of some contacts using Linear Satellites
There are lots of articles about building and operating Amateur Satellite Stations here on our blog. The following are links to several articles and series on this topic: