ISS Crew Contact Part 1 – Ground Station Design and Construction

Satellite 3.0 Station Control Details
Ground Station for Satellites and the ISS

Our planned ISS Crew Contact is almost here! It will take place sometime during the first week of December (December 3rd – 8th) at the Hudson Memorial School (HMS) here in Hudson, NH. I am planning a series of articles here on our blog to explain the process for preparing our ground station(s) and making our contact.

The Beginning

Dan Pooler, AC1EN who is a teacher at HMS began this process almost a year ago by reaching out to the Nashua Area Radio Society. Dan wanted to do an ISS Crew Contact at his school and asked if we would help him with the Amateur Radio elements.

We decided early on that we wanted a Direct contact (one which uses an on-site Amateur Radio Ground Station).

ARRIS Ground Station Recommendations

The first thing we did was to look at the ARISS Ground Station requirements document. We learned that we needed to build two Ground Stations – a Primary Station and a Backup Station. These requirements and our interest in Satellite Communications led to the construction of a series of Portable Space Ground Stations.

The Primary Station

The primary station requirements are as follows:

  • Transceiver with 50–100 W output, 1 kHz tuning steps, and 21 memories capable of storing split frequencies
  • Low-loss coax (such as 9913 or LMR-400)
  • Mast mounted receive pre-amplifier
  • 14 element yagi antenna with switchable circular polarity
  • Antenna rotators for azimuth (0–360°) and elevation (0–180°), with an interface for computer control
  • Computer running tracking software for antenna control (including flip mode operation)

The ARISS approach is to used a series of “secret” uplink frequencies which are determined and provided only to the contact operators before each contact. Doppler correction is not required on the 2m band where the crew contacts take place.

Our Portable 2.0 Satellite Station already existed, and it met many of these requirements with a notable exception:

14 element yagi antenna with switchable circular polarity

Satellite Antenna Details
Satellite Station 2.0 Antenna Details

Our 2.0 Station has an 8 element yagi with fixed polarity. This requirement turned out to have a much more significant impact on the design of the Primary Ground Station than just changing the antenna and ultimately led to the construction of our Portable Satellite Station 3.0. More on this in a minute…

The Backup Station

The backup station requirements are as follows:

  • Transceiver with 50–100 W output, 1 kHz tuning steps, and 21 memories capable of storing split frequencies
  • Power amplifier with 100–200W output (optional)
  • Low-loss coax
  • Mast mounted receive pre-amplifier
  • Omnidirectional antenna, either vertical (preferred) or eggbeater style
  • Uninterruptible power source (UPS or battery)

Our Approach

After consulting with the ARISS folks and some thought, we decided to use the then current Satellite Station 2.0 as the Backup Station and build a new Satellite Station 3.0 for use as the Primary Station. This approach also involved installing a larger rotator to accommodate the larger antenna and a heavier fiberglass cross-boom. The 3.0 station would also receive a more capable antenna for the 70 cm band and add a 23 cm antenna for a third band.

The plan included upgrading the 2.0 Station Antennas to include switchable polarity and the addition of a 200W power amplifier for 2 m to compensate for the reduced gain of the smaller 8 element yagi in the 2.0 station.

Building The Primary Station

Satellite Station 3.0 Antenna System
Satellite Station 3.0 Antenna System

The construction and testing of the 3.0 Station are well covered in articles on our Blog so I’ll just share a little information about the final result. The new antenna system used the same ground-based roof tower arrangement that worked so well for the 2.0 station. The larger 3.0 antennas are center mounted on a fiberglass cross boom to prevent the boom from affecting the antenna patterns. We’ve also added a 23 cm loop yagi for a third band. The 3.0 antenna system also uses a more powerful Azimuth-Elevation Rotator from Alfa-Spid.

2m Yagi Switchable Polarity Feedpoint
2m Yagi Switchable Polarity Feedpoint

The new 2 m and 70 cm antennas use relays at their feed point to enable remote switching of the antenna’s polarity between Left-Hand and Right-Hand circular polarity.

Satellite 3.0 Station Radio and Controls
Satellite 3.0 Station Radio and Controls

The upgraded 3.0 ground station adds a control console for switch the polarity of the antennas and a custom built PPT Router Device to manage PTT sequencing of the radio and the pre-amplifiers at the antennas.

Computer Control via MacDoppler
Computer Control via MacDoppler

We continue to use the excellent MacDoppler software to control tracking and Doppler correction in the 3.0 Station.

Building The Backup Station

Upgraded 2.0 Antennas
Upgraded 2.0 Antennas

The upgrades to the 2.0 Antenna System involved the installation of Polarity Switching relays in the feedpoints of the 2.0 antennas. This upgrade was a fairly straightford one.

Backup Station Radio and Controls Test
Backup Station Radio and Controls Test

The ground station side was more involved as we needed to build a complete, second station. I was able to purchase an Icom IC-910H radio used in good condition for this purpose. The rest of the station components were similar to the Primary Station.

Backup Station Test at the Fall Tech Class
Backup Station Test at the Fall Tech Class

We tested the Backup Station at our Fall Technician License Class and it worked great! several of our class students used the station to make their first satellite contacts.

I am currently working on adding the 2 m amplifier and improving the PTT sequencing system on the Backup Station and I plan to post more about these upgrades in here in the near future.

Audio System for Our Contact

Mixing Board at HMS
Mixing Board at HMS

Our contact will take place in the auditorium at HMS. The room has a high-quality sound system and mixing board for audio.

Audio System for ISS Contact
Audio System for ISS Contact

Dave, K1DLM is part of our ISS Crew Contact Team, and he has quite a bit of pro-level audio experience. He has put together the following plan for our Audio System. His design allows us to smoothly transfer audio to and from either the Primary or the Back Stations. We are also planning to record video and Livestream video to the N1FD Facebook page during our contact, and his design supports these elements as well.

Data System for ISS Contact
Data System for ISS Contact

The final element in our plan is the Data System. The network at HMS is very tightly controlled from a security point of view and this makes it difficult to use for contact critical functions like access to up to date Keplerian Elements for our straightforward. Dave has an LTE-based Internet Access System that we have used in the past and we’ve elected to use this to support our stations. We are planning to use the HMS network to transport the Livestream video from our contact. We’ll be using a Mevo Internet Camera for this purpose.

A Million Details…

As you can probably imagine, there a many details that go into making a project like this possible. Here’s a rough timeline of some of the major remaining steps from a Ground Station point of view:

  • Assemble both stations at our QTH with the 2m amplifier and the final 215′ control cables and feed lines – In progress, should be complete in a few days.
  • Full Station Test – add the Audio and Data System components and test the full station at our QTH – Within a week.
  • Configure and Test Data Network Access – for Live Streaming Video and computers and HMS.
  • Setup Ground Station at HMS and perform Dry Run Test – Complete by December 1st.

Dan and the HMS faculty team are also very busy finalizing the student’s questions and handle press related activities.

We hope our readers will join us via the Livestream video for our contact. We’ll post more on this as we get closer to our contact!

Fred, AB1OC

HAB-4 Launch Preparations

We have established launch windows and begun final launch preparations for our High-Altitude Balloon 4 (HAB-4) launch. We’ve made some modifications to our HAB platform to improve its cold temperature performance and we’ve determined the Balloon and flight path parameters for the upcoming flight. HAB-4 will carry an APRS transmitter and can be tracked using aprs.fi. You can read more about HAB-4 flight preparations via the link that follows.

Source: HAB-4 Launch Preparations – Nashua Area Radio Society

Working IC-9700 Shown In Tokyo

Working IC-9700 On Display In Tokyo

Working IC-9700 On Display In Tokyo

Icom displayed three working demonstration units of the forthcoming IC-9700 VHF/UHF/1.2GHz transceiver, Icom Inc. at the Tokyo Hamfair, which took place in Ariake, Tokyo on August 25th – 26th.

Source: New Icom Amateur Products Shown at Tokyo Hamfair 2018

The IC-9700 is a new VHF/UHF radio that is based upon the Software Defined Radio (SDR) platform that Icom uses in the IC-7300 and IC-7610.

It looks like this is going to be an excellent radio for Satellite, EME, and other weak-signal work on the 2 m, 70 cm, and 23 cm bands. The IC-9700 features a pan adapter display which will be very useful for working contacts through linear satellites.

Based upon previous new Transceivers release by Icom, I would guess we are at least 8 months to a year away from the time when this radio will be offered for sale in the USA.

Here’s some video of the forthcoming  IC-9700 as well as other gear from Icom. The video also features other new products and updated Firmware capabilities from Icom. Enjoy!

Fred, AB1OC

A Portable Satellite Station Part 6 – 3.0 Station Initial Contacts

Tech Class First 3.0 Portable Station Test

Tech Class First 3.0 Portable Station Test

With the construction of our Portable Satellite Station 3.0 complete, we’ve been looking forward to an opportunity to test the new setup. We chose the Nashua Area Radio Society’s recent Technician License Class as a good time to both test the new stations and to acquaint our Tech Class grads with one of the many things that they can do with their new licenses – amateur satellite operations.

Tech Class 3.0 Portable Satellite Antenna Test

Tech Class 3.0 Portable Satellite Antenna Test

The first transport of the new 3.0 station antenna system turned out to be simple. The booms and counterweights of the new antenna system are easily separated via the removal of a few bolts located at the cross-boom. This allowed the antennas feed-points, rotator loops and polarity switching connections to be removed and transported as complete assemblies. The separation of the longer-boom antennas into two sections also made transporting the antennas easier and made the antenna elements less prone to bending in transport. Setup and cabling of the new 3.0 antenna system as the class site was quick and simple.

The opportunities to make contacts during our Tech Class were limited but the new system performed well with one exception. We saw a higher than expected SWR readings on the 70cm yagi during transmit. We immediately suspected problems with one of the N connectors that were installed during the construction of the new system (component testing during assembly showed the SWR readings on the 70cm side of the system to be in spec.).

Portable Satellite Station 3.0 Antenna System

Portable Satellite Station 3.0 Antenna System

After the class, we set up the 3.0 system again at our QTH. Transport and re-assembly of the new system are somewhat easier and faster than our 2.0 portable station antenna setup is.

Satellite Antenna System 3.0 Connections

Satellite Antenna System 3.0 Connections

The 3.0 antenna system uses a similar connector bulkhead approach that we used previously. The rotator controls are handled via a single, 8-conductor cable and we have a new connection for the polarity switching controls on the 3.0 system yagis.

Rotator Loop Coax Retention System

Rotator Loop Coax Retention System

We have had some problems with the connections between the preamplifiers mounted at the antennas and the rotator loops which connect the antennas to them. This problem caused several failures in the associated N-connectors on the 2.0 portable antenna system so we fabricated a simple arrangement to prevent the rotation of the antennas from turning the coax inside the N-connectors and causing these failures.

70cm Yagi SWR in the Satellite Sub-Band

70cm Antenna and Feedline SWR in the Satellite Sub-Band

Some isolation tests were performed on each cabling element of the 70cm side of the 3.0 antenna system and this resulted in the location of an improperly installed N-connector. The faulty connector was easily replaced and this corrected the SWR readings on the 70cm side of the antenna system. The image above shows the SWR readings for the 70cm antenna after the faulty connector was replaced. We checked the SWR performance with the 70cm yagi set for both Left-Hand and Right-Hand Circular Polarization and we saw good results in both configurations.

2m Yagi SWR in the Satellite Sub-Band

2m Antenna and Feedline SWR in the Satellite Sub-Band

We also re-checked the SWR performance of the 2m side of the antenna system with the 2m yagi in both polarity settings and it looked good as well.

Portable Satellite Antenna 3.0 Az-El Rotator

Portable Satellite Antenna 3.0 Az-El Rotator

The 3.0 antenna system uses an Alfa-Spid rotator. The Alfa-Spid can handle the additional weight of the larger yagis and has a more precise pointing ability (1° accuracy) which is helpful given the tighter patterns of the larger, 3.0 yagis.

70cm Yagi Switchable Polarity Feedpoint

70cm Yagi Switchable Polarity Feedpoint

The new yagis in the 3.0 antenna system have feed point arrangements which allow the polarity of the yagis to be switched between Left-Hand Circular Polarity (LHCP) and Right-Hand Circular Polarity (RHCP). These antennas used a relay arrangement at the feed-points that flip the polarity of one plane of the yagis by 180° which in turn changes the polarity of the antennas between LHCP and RHCP.

Portable Satellite Station 3.0 Radio and Controls

Portable Satellite Station 3.0 Radio and Controls

With the SWR problem corrected, we set up the 3.0 station radio and controls. The 3.0 station adds our homebuilt PTT Router and the control box from DXengineering which controls polarity switching. Also, the Green Heron rotator control box has been configured to control the new Alfa-Spid rotator.

POrtable Satellite Station 3.0 Computer Control via MacDoppler

Portable Satellite Station 3.0 Computer Control via MacDoppler

We are continuing to use the excellent MacDoppler software to control the 3.0 station. MacDoppler provides tracking controls for the antennas and doppler correction for the Icom-9100 transceivers uplink and downlink VFOs.

Satellite 3.0 Station Control Details

Satellite 3.0 Station Control Details

The image above shows a closer view of the 3.0 station controls. The box in the middle-left with four LEDs and the knob is used to select one of four polarity configurations for the 2m and 70cm yagis – RHCP/RHCP, LHCP/RHCP, RHCP/LHCP, or LHCP/LHCP. Just to the right in the middle stack is our homebrewed PTT Router which expands and improves the PTT sequencing performance of the station.

So how does the new 3.0 station perform? The new antennas have a tighter pattern requiring careful pointing calibration of the rotators during setup. This is easy to do with the Alfa-Spid rotator. The new antennas have noticeable more gain as compared to the LEO pack used on the 2.0 station. We are also surprised to see how much difference the polarity switching capability makes in certain situations – sometimes as much as two S units (12 dB) in certain situations. The combination of the new antennas and selection of the best polarity combination allows solid operation on many satellites passes with as little as 2 watts of uplink power. We have made a little over 50 QSOs on the new 3.0 station so far and it works great! For more information on the Portable 3.0 Station as well as the 2.0 and 1.0 stations that we’ve built – see the links below:

Fred, AB1OC

 

ISS Crew Contact

We have been working with Hudson Memorial School to help them secure and prepare for an ISS Crew Contact. We are hoping to support their ISS Crew Contact using an upgraded version of our Portable Satellite Ground Station. A school in Raleigh, North Carolina had their ISS Crew Contact today and I decided to record the downlink from the ISS to test our backup Portable 2.0 ISS/Satellite Ground Station.

The video above is a capture of the school’s contact. It was very easy to receive the ISS downlink on our portable backup ground station. I heard the downlink a few seconds before the ISS came up on the horizon and the audio was solid for the duration of the contact. We can only hear the astronaut’s side of the contact as we cannot receive the school’s uplink from Raleigh, NC. The ISS pass began here in New Hampshire part way through the school’s session so we did not hear the first few questions.

Update on Portable ISS/Sat Station 3.0

Portable ISS/Sat Station 3.0 Antenna System

Portable ISS/Sat Station 3.0 Antenna System

Work on our upgraded primary Portable 3.0 Station which includes a larger antenna system using switchable circular polarity is progressing well. The portable tower, upgraded rotator system, and the new, larger 2m and 70cm circularly polarized antennas are complete.  We are just waiting for a few additional components to arrive here and the upgraded portable ground station should be ready for its first test at our Technician License Class later this month.

More on Today’s ISS Crew Contact

You can see a live stream of the ISS Contact from the school above. There is a great deal of planning which goes into an ISS Crew Contact such as this. We are working closely with Hudson Memorial School on their project and their school is also beginning a High-Altitude Balloon Project with us in a few weeks.

The ISS Crew Contact today was exciting to listen too and we are looking forward to being able to share this experience with Hudson Memorial School in the near future.

Fred, AB1OC

A Portable Satellite Station Part 5 – Plans for Our 3.0 Station

Satellite Grids Worked

Satellite Grids Worked

We’ve made about 250 contacts with our Portable Satellite Station 2.0 and we have worked 106 grids which should be enough to earn a Satellite VUCC. The picture above shows the grids that we’ve worked via Satellites. We’ve learned a lot about satellite operation and had a great deal of fun in the process!

Portable Satellite Station 2.0 Goals

Portable Satellite Station 2.0 Goals

We’ve met all of our original goals for our 2.0 Station and we’ve used it portable at License Classes, Field Day, and other Amateur Radio Demonstrations. We’ve also shared presentations about our 2.0 Station with Amateur Radio Groups here in the New England area. The question that we get most often about the 2.0 Station is “What are your plans for the Portable Satellite Station 3.0”?

Portable Satellite Station 3.0 Goals

Portable Satellite Station 3.0 Goals

Well, here is the plan. We are working with a local group to secure and host an ISS Crew contact. The ARISS folks have published ground station requirements for these contacts. Here are the primary station requirements:

  • Transceiver with 50–100 W output, 1 kHz tuning steps, and 21 memories capable of storing split frequencies
  • Low-loss coax (such as 9913 or LMR-400)
  • Mast-mounted receive pre-amplifier
  • 14-element yagi antenna with switched circular polarity
  • Antenna rotators for azimuth (0–360°) and elevation (0–180°), with an interface for computer control
  • Computer running tracking software for antenna control (including flip mode operation)

Fortunately, our 2.0 Station meets or exceeds almost all of the primary station requirements with the exception of the antennas. The required antenna upgrades will shape the plans for our Portable Satellite Station 3.0.

M2 Antenna Systems 2MCP14

M2 Antenna Systems 2MCP14

ISS Crew Contacts are conducted using 2m Simplex radios on the ISS. We choose the 14-element circularly polarized 2MCP14 yagi from M2 Antenna Systems to meet the ARISS requirements for 2m. Here are the specifications for this antenna:

2MCP14 Antenna Specifications

2MCP14 Antenna Specifications

The 2MCP14 antenna offers a good balance between gain (12.34 dBi) and boom length (10′-6″) and is near the size limit that is practical for use in our Portable Station. This antenna provides an additional 3.14 dBi of gain compared to the M2 Antenna Systems 2MCP8A yagi which we are currently using in the 2.0 Station.

M2 Antenna Systems 436CP30

M2 Antenna Systems 436CP30

While not required for an ARISS Crew Contact, we are also going to upgrade the 70cm yagi to a 30-element circularly polarized M2 Antenna Systems 436CP30 yagi. Here are the specifications for this antenna:

436CP30 Antenna Specifications

436CP30 Antenna Specifications

This antenna is a good match for the upgraded 2m yagi. The 436CP30 has a boom length of 9′-9″ and a gain of 15.50 dBi. This antenna will provide an additional 2.2 dBi of gain compared to the M2 Antenna Systems 436CP16 yagi which we are currently using in the 2.0 Station.

Satellite Antennas Setup Portable

Satellite Antennas Setup Portable

The new antennas will require some modifications to our portable antenna system arrangement. They will need to be mounted on a cross-boom near their centers. As a result, a non-conductive fiberglass cross boom will be required to avoid problems with pattern distortion.

FGCB60 Non-Conductive Cross Boom

FGCB60 Non-Conductive Cross Boom

We will be using an M2 Antenna Systems FGCB60 Cross Boom which has removable, non-conductive end sections made from fiberglass material. The removable ends will make it easier to transport the antenna system. We will also need to make a new mast which is 24″ longer than our current one in the 2.0 Station to create the needed ground clearance for the longer antennas.

Alfa Spid Az-El Rotator

Alfa Spid Az-El Rotator

We are also planning to use a larger Alfa Spid Az-El Rotator. This unit will handle the extra weight of the longer yagi antennas and cross boom assembly and is more precise than the Yaesu unit used on the 2.0 station.

PS-2M and PS-70CM Polarity Switches

PS-2M and PS-70CM Polarity Switches

The last piece of the 3.0 Station Antenna upgrade is to add switchable left-hand and right-hand circular polarity. This will be accomplished via M2 Antenna Systems PS-2M and PS-70CM switchable polarity feed point upgrades for the 3.0 yagis.

DXEngineering EC-4 Control Box

DXEngineering EC-4 Control Box

We have a DXEngineering EC-4 Control Box from a previous project and we can use it to control the relays in the Polarity Switches which will be part of the 3.0 Station antennas. The box will allow us to select any combination of left and right-hand circular polarization on the 3.0 Station uplink and downlink antennas.

We should have all of the parts here for the 3.0 upgrade by the end of the year. We’ll post more as the project proceeds. Other articles in the Portable Satellite Station series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Fred, AB1OC

Students Analyze HAB-2’s Flight Data – Nashua Area Radio Society

The HAB team members in NARS have created a five-session curriculum to teach physics, atmospheric science, and radio technology that we use as part of our HABlaunches. The last session is the most fun of all – analyzing the telemetry data from our HAB’s flight to see what the students can learn from it.

Source: Students Analyze HAB-2’s Flight Data – Nashua Area Radio Society

We got together with the students who did our HAB-2 launch this week to analyze the data from the flight and to preview some of the videos that HAB-2 captured during its flight. You can read more about what we learned from the flight data on the Nashua Area Radio Society website via the link above

Fred, AB1OC

HAB-2 Sets Altitude Record! – Nashua Area Radio Society

We flew our High-Altitude Balloon for the second time this past weekend. Our second High-Altitude Balloon Flight (HAB-2) was part of a STEM learning project that we did with STEM club students at Bishop-Guertin High School in Nashua, NH. The students did all of the flight prep and launched HAB-2 at approximately 11 am ET from a school in Winchester, NH. Parents, teachers and local students joined us for the launch as did several members of our HAB team.

Source: HAB-2 Sets Altitude Record! – Nashua Area Radio Society

Our students prepared, launched, and tracked HAB-2 this past weekend. Their HAB made it to almost 118,000 ft! You can read more about the launch and the flight on the Nashua Area Radio Society’s website via the link above.

Fred, AB1OC

Raspberry Pi Satellite Rotator Interface

MacDoppler and GHTracker

MacDoppler and GHTracker

We’ve been using our Portable Satellite Station 2.0 for some time now and it works great. One area that can be improved is the interface between the MacDoppler Satellite Tracking program we use and the GHTracker application which controls the Green Heron Engineering RT-21 Az/El Rotator Controller in our setup. Our initial approach was to run the GHTracker app under Windows/VMWare on the same MacBook Air laptop that runs MacDoppler. While this approach works ok, it was more complex and less reliable than we had hoped.

Fortunately, the interface between MacDoppler and GHTracker uses a UDP-based interface which will run over an IP network.

GHTracker Running On A Raspberry Pi 3

GHTracker Running On A Raspberry Pi 3

Anita, AB1QB got great results using a Raspberry Pi 2 with a Touch Screen for her DX Alarm Clock Project so I decided to do something similar with GHTracker. The new Raspberry Pi 3 Model B boards feature a built-in WiFi networking interface and four USB ports which made the RPi 3 a perfect platform for this project. An email exchange with Jeff at Green Heron Engineering confirmed that GHTracker could be made to run under Linux on the Raspberry Pi (RPi).

We wanted a compact package that did not require anything but a power supply to run the final project. There are lots of great choices of parts to build a Raspberry Pi system. Here’s what we used:

Total cost for all of the parts was $120.

Assembly of the case and the hardware was straightforward. The folks at Adafruit provide a pre-built Jesse Linux image for the RPi which includes the necessary driver for the Touch Screen Display.

After a bit of configuration work and the creation of a few shell scripts to make it easy to boot the RPi to a HDMI display or to the Touch Display, we were ready to install the GHTracker App. we also enabled the VNC Server on the RPi so that we could use a VNC Client application on our MacBook Air in place of directly connecting a display, keyboard, and mouse to the RPi. Finally, we installed Samba on our RPi to allow files to be moved between our other computers and the RPi.

GHTracker Running on the Raspberry Pi

GHTracker Running on the Raspberry Pi

Jeff at Green Heron Engineering provided a copy of GHTracker V1.23 and the necessary serial interface library to enable its use on the RPi. Jeff is planning to make a tar file available with GHTracker and the library in the near future. We did some configuration work on LXDE (the GUI interface for Linux that runs on the RPi) automatically run GHTracker whenever the RPi is booted up. We also optimized the GUI for the sole purpose of running GHTracker on the Touch Screen Display. Finally, we configured the Ethernet and WiFi interfaces on the RPi to work with our home network and with our LTE Hotspot modem.

RPi GHTracker Test Setup

RPi GHTracker Test Setup

With all of the software work done, it was time to test the combination with our Satellite Rotator System. The setup worked on the first try using a WiFi network connection between the MacBook Air Laptop running MacDoppler and the RPi. The USB-based serial ports which control Azimuth and Elevation direction of the rotators worked as soon as they were plugged into the RPi. Also, the touchscreen interface works well with the GHTracker App making the combination easy to use.

MacDoppler and GHTracker via VNC

MacDoppler and GHTracker via VNC

The VNC Client/Server combination allows us to work with the software on the RPi right form our MacBook Air laptop. It also makes for a nice display for monitoring the GHTracker App’s operation from the Mac.

Other articles in the Portable Satellite Station series include:

You may also be interested in the satellite station at our home QTH. You can read more about that here.

Thanks to the help from Jeff at Green Heron Engineering, this project was very easy to do and worked out well. The Raspberry Pi 3 platform is very powerful and relatively easy to work with. It makes a great start for many Ham Radio projects. Also, there is a wealth of online documentation, how-to information, and open source software for the RPi. I hope that some of our readers will give the RPi a try!

Fred, AB1OC

Orionid Meteor Shower: Friday Night Brings Excellent Conditions In Eastern US

Orionid Meteor Shower Forecast

Orionid Meteor Shower Forecast

One of the best meteor showers of the fall, the Orionid Meteor Shower, will peak on Friday night with over a dozen meteors streaking across the night sky every hour.

Source: Orionid meteor shower: Friday night to bring excellent viewing conditions in the Eastern US.

It looks like this weekend is going to be a good time to work Meteor Scatter contacts on 6m! The Orionid’s peak tonight (Friday) and tomorrow (Saturday) night, October 20th and 21st. We’ll be operating using WSJT-X MSK144 mode on 6m. We are planning to use our Remote Operating setup to take advantage of our SDR’s receiver capabilities and the connected 500w amplifier.

Fred, AB1OC