Satellite Station 4.0 Part 11 – Phone Patch/Telebridge Capability

Council Rock South Students Contact the ISS

Council Rock South Students Contact the ISS

I have joined the ARISS Program as a Mentor to help schools make contacts with astronauts on the International Space Station (ISS). School contacts as part of the ARISS program can take two forms – Direct Contacts and Telebridge Contacts.

ARISS Direct Contacts

Direct contacts involve setting up a space communications ground station at the school making the contact.

ARISS Direct Contact Ground Station Antennas at Council Rock HS

ARISS Direct Contact Ground Station Antennas at Council Rock HS

Direct Contacts involve a great deal of preparation and a local Ham Club which has considerable VHF weak-signal experience and equipment to partner with on a school’s contact. There can also be considerable expense involved in assembling the necessary ground station for a Direct Contact. In addition, some locations are much better than others in terms of access to good, high-angle ISS passes and an environment that is relatively free of nearby obstructions like buildings, hills, etc.

Our radio club, The Nashua Area Radio Society, supported a Direct Contact at Hudson Memorial School in December 2018. It was a fantastic experience. You can read more about what was involved here.

ARISS Telebridge Contacts

students at Maani Ulujuk High School in Rankin Inlet, Nunavut, Canada

Students at Maani Ulujuk High School in Rankin Inlet, Nunavut, Canada

Telebridge contacts involve using an existing ground station in a different location with an audio link to the school making the contact via telephone. This type of contact provides a high-quality experience with an astronaut on the ISS without the need to construct a ground station at the school. It enables the teachers involved in the contact process to focus on the educational aspects of their contact with the ISS.

All of the ARISS Telebridge Ground stations are built and operated to very high standards.

Also, schools in difficult locations or those who don’t have the needed support of a local Ham Radio club with the necessary space ground station equipment can still enjoy making a contact with an astronaut on the ISS. In addition, a Telebridge contact also enables the supporting Amateur Radio Club to focus on providing great Amateur Radio activities and educational support to their partner school.

Adding Telebridge Capability to Our Station

Space Communications Ground Station at AB1OC-AB1QB

Space Communications Ground Station at AB1OC-AB1QB

We’ve used the station here to make many satellite contacts and to listen to ARISS contacts from the ISS. We’ve also used our station to receive images from the ISS during ISS SSTV events. We’ve decided to add a Phone Patch to our station here to enable it to be used as a testbed for schools preparing for Telebridge contacts.

Adding A Telephone Patch

Phone Patch To Enable Telebridges

Phone Patch To Enable Testing and Hosting Telebridge Contacts

A Telephone Patch enables a third party to communicate over an Amateur Radio link using a telephone. A Phone Patch provides a connection between a Transceiver and a telephone line. It also handles creating a proper balance at the 2-wire Hybrid Interface that connects to the telephone line to the radio. A typical Phone Patch device also provides for Transmit and Receive level adjustments.

Phone Patch units are not used all that much anymore. Fortunately, MFJ still makes the MFJ-624E Hybrid Phone Patch.

Setting up the MFJ Phone Patch was pretty straightforward. All that was required to work with our IC-9700 Transceiver was to set the internal jumpers in the MFJ Phone Patch to configure its microphone connection properly. The MFJ Phone Patch came with a cable to connect to the round microphone jack on the IC-9700 Transceiver. A connection between our audio amplifier to bring audio into the Phone Patch was made to complete the installation.

Testing On The Air

The MFJ Phone Patch was adjusted to achieve a good balance on the 2-wire Hybrid Interface to the telephone line and the Transmit and Receive levels were properly adjusted prior to on-the-air use. These procedures are clearly explained in the manual for the MFJ-624E and are easy to complete.

With these steps complete, we set up a telephone call and made several contacts using FM stateless on the air. We received good audio reports and could easily understand the downlink audio using a standard telephone receiver.

Becoming an ARISS Telebridge Ground Station

My initial purpose for adding Telebridge capability to our ground station was to enable it to be used to perform testing of the audio systems in schools that will be hosting Telebridge contacts. I am also going to apply to become one of the ARISS Telebridge Ground Stations in North America. We have an emergency backup power system here and our station’s location in our home makes it a good choice for situations where contacts need to be made at any time of the day or night. More to come on this in the future.

More About Our Ground Station

Here are links to some additional posts about our Satellite Ground Stations:

Fred, AB1OC

Satellite Station 4.0 Part 10 – Adding 23 cm To Our Satellite SDR

Satellite SDR

DEM L24TX Tx Converter

We’ve recently received our L24TX Transmit Converter from Down East Microwave. The unit is compact, simple, and produces up to 25W output in the satellite section of the 23 cm band (1260 MHz – 1270 MHz, actually 24 cm). The L24TX is a transmit-only device that is intended to enable L-band uplinks for Satellite use. This article is about our most recent project which involved integrating the L24TX into our Flex SDR Satellite System.

Satellite SDR

24 cm Tx Converter Rear Panel

Connecting the unit is straightforward. The unit requires an IF input, a 10 MHz reference oscillator, DC power, and a transmit keyline. The later two inputs are provided via a 7-pin connector and a DEM supplied cable. We ordered our unit with the following configuration options:

  • IF 28 Mhz = 1260 MHz output
  • Max IF Drive Level – +10 dBm
  • Fan and Case configured for mounting in the shack

Fortunately, our feedlines for the 23/24 cm band are hardline-based and relatively short. The unit is also available in a configuration that would enable it to be remotely mounted in an enclosure on a tower.

Satellite SDR

24 cm Tx Converter Installation in our Remote Gateway SDR Rack

The unit fits nicely into our Remote Gateway SDR Rack. The L24TX does not include a power output display so we used a 23/24 cm sensor and our WaveNode WN-2 Wattmeter to monitor output power from the unit. The unit does have leads that output a voltage that is proportional to output power. This could be used to build a power output bar display or meter. the front panel indicates display a power-on indication, lock to the 10 MHz clock input, and Tx when the unit is transmitting.

Satellite SDR

Overall Satellite SDR System Design

Integration into our Satellite SDR System was straightforward. Our system already included splitters for the 10 MHz GPSDO and the 28 MHz Transverter outputs from our Flex 6700 SDR. I had hoped to use one of the leads from the SmartSDR BITS cable we are using to key our 70 cm Transverter but the BITS cable did not have an adequate drive level to key the L24TX.

Satellite SDR

Remote SDR Gateway Tx Band Settings

Fortunately, the Flex 6700 has configurable TX1-TX3 outputs for keying devices like Transverters. The use of the TX2 output to key the L24TX was easily configured in the SmartSDR’s TX Band Settings.

Satellite SDR

23 cm Tx Converter Setup in SmartSDR

It is necessary to configure SmartSDR for the L24TX. The required settings are in the XVTR options tab. In addition to configuring the mapping between the Flex 6700’s XVTR IF frequency and the unit’s output Frequency, one needs to set the IF drive levels. We used the default drive level of 6.0 dBm and adjusted the IF Gain Control on the L24TX until the full output of 25W was reached while transmitting a tone. The correct adjustment is apparent when further gain increases do not provide a proportional increase in output power. The proper setting of the RF drive and gain will keep the L24TX’s output in its linear range of operation.

Satellite SDR

Final Power Distribution Design

The L24TX is powered via the power distribution system in our Satellite SDR Rack. Control and current limiting for the 2m LPDA, 70 cm Transverter, and the L24TX are individually controlled via a RigRunner 4005i IP Power Controller.

Satellite SDR

SDR Satellite System Remote Power Control via a RigRunner 4005i

The RigRunner is remotely accessible over the Internet and our network via a password-protected web interface. This enables us to easily power down or power cycle individual components in the Satellite SDR System remotely.

MacDoppler Tracking AO-91

MacDoppler Tracking AO-91

With all of the hardware installation and calibration steps complete, we are turning our attention to the software side of the setup. We will be using MacDoppler for satellite tracking and VFO control of our Satellite SDR System. This creates a need to connect the MacDoppler program which runs on a Mac to SmartSDR and the Flex 6700 which is a Windows-based system. Fortunately, MacDoppler provides a UDP broadcast mode that transmits az/el antenna position information as well as data to control radio VFOs to adjust for Doppler shift.

Satellite SDR

FlexBridge Software Beta

We are working on a custom windows application called FlexBridge to enable MacDoppler to run our Flex SDR-based Satellite System. FlexBridge runs on a Windows PC. It receives and parses the UDP broadcast messages from MacDoppler and uses the FlexLib API to properly configure and control the Flex SDR’s VFOs.

Satellite SDR

SmartSDR Operating With AO-92 in L-V Mode

At present, FlexBridge can configure and control SmartSDR (or a Maestro Client) that is operating our SDR Satellite System. The screenshot above shows the MacDoppler, FlexBridge, SmartSDR combination operating with AO-92 in L/V mode. This software is still an in-progress development and we plan to add the ability for FlexBridge to connect to the radio via SmartLink as well as support for the Green Heron RT-21 Az/El Rotator Controller that we are using. We’ll be sharing more about FlexBridge here as the software development progresses.

The next step in our Satellite Station 4.0 Remote Gateway project will be to move our satellite antenna controls and feedlines into the shack and begin testing the complete setup using local control. Once this step is complete, we’ll focus on the final steps to enable remote operation of our satellite station via the Internet.

Here are links to some additional posts about our Satellite Station 4.0 Projects:

Fred, AB1OC

Learn About Ham Radio at HamXposition @ Boxboro

Remote HF GOTA Station at HamXpositon

The Nashua Area Radio Society will be hosting several activities and displays at HamXposition this year. Our planned activities include:

  • NEW! Ham Bootcamp Program – a hands-on activity to help folks get on the air and build their stations
  • Our Ham Expo Display featuring information and hands-on activities you can do with Amateur Radio
  • Kit Building Activity featuring a choice of two different kits
  • Multiple Get On The Air Stations including an HF Remote GOTA station and an on-site Satellite GOTA station
  • Special Event Station using the N1T Callsign
  • NEW! Radio Programming Station – Get your FM HT programmed with a custom repeater list for your location
  • Two Forum Presentations by Nashua Area Radio Society Members

The ARRL and the HamXposition team have been helping us to promote our activities. You can see what the ARRL is saying about our plans in their recent posting – Dayton Hamvention Radio Club of the Year to Hold Ham Bootcamp at New England Convention.

You can learn more about HamXposition and our activities there at the HamXpostion website.

Ham Bootcamp

A First HF Contact at Ham Bootcamp

We have created a program that we call Ham Bootcamp. Bootcamp to helps recently licensed and upgraded hams to get on the air. We are making this program available to up to 100 HamXpostion attendees on a first-come-first-served basis.

Our Bootcamp program will run from 9 am to noon on Saturday, September 7th in the Federal Room. Bootcamp will feature tracks for both Technician and General class license holders. It is also a great place for folks who are not yet licensed to learn more about Amateur Radio and how to get on the air.

Our Bootcamp program will include:

  • How to make a contact and join a repeater net
  • Putting together an HF station
  • Radio, antenna, and feed line choices
  • Getting started with FT8 and digital modes
  • Exchanging QSL cards
  • Learning Morse code
  • Tips on upgrading
  • Introduction to ham radio kit building
  • Handheld radio programming tutorials

Ham Bootcamp is free.  Participants will receive discount certificates for a kit build at the show and for purchase of Ham Radio Gear from Ham Radio Outlet.

You can learn more about Ham Bootcamp on the HamXposition website and on our website.

Source: Interest and Excitement Around HamXposition Is Building

I wanted to share our plans for several hands-on activities at HamXposition @ Boxboro in September. We hope that Ham Bootcamp will be of particular interest to folks getting into Amateur Radio. You can learn more about Ham Bootcamp and all of our planned activities via the link above. We hope to see some of our readers at HamXpostion next month!

Fred, AB1OC

Satellite Station 4.0 Part 7 – Flex SDR Satellite Transceiver

Flex-6700 SmartSDR in Satellite Mode

A major part of our plans for Satellite Station 4.0 includes the ability to operate our home satellite station remotely over the Internet. We’ve been using our Flex-6700 Software Defined Radio (SDR) as a Remote Operating Gateway (GW) on the HF Bands and 6m for some time now. Our latest project is to upgrade our Remote Operating GW to support satellite operations on the 2m, 70cm, and 23cm bands.

Remote Gateway Rack with Satellite Additions

Adding the additional bands for satellite operations involves adding a 2m Amplifier, a 70cm Transverter, and a 23cm Upconverter to our SDR-based Remote GW. We decided to repackage our Remote GW set up in a rack mount cabinet on casters. This allows all of the required gear to be placed under the desk in our station in a way that is neat and reliable.

We also added an Ethernet Switch, a pair of USB hubs, and upgraded power and remote controls to improve our ability to manage our station remotely and to simplify the interconnections between our Remote GW and the rest of our station. The final assembly mounts all of the components in the rack on 5 levels as follows:

The purpose of these components is explained in more detail below.

All of these devices are powered from 13.8 Vdc station power to avoid the potential for noise from wall wart transformers inside the rack. Also, attention was paid to the isolation of the digital and RF components on separate levels to minimize the chance that noise from digital signals would leak into the RF chains.

Satellite SDR

Remote Satellite SDR System Design

The diagram above shows how the added components for the satellite bands interconnect with the Flex-6700. The new components include:

The Flex-6700 can generate and receive signals on the 2m band but it does this at IF power levels. The 2m LPDA brings the IF power level up to a maximum of 75 watts. The DIPs device enables the Flex-6700 to operate in U/v, V/u, and L/v modes.

The 28 MHz splitter allows a total of 4 transverters/upconverters to be connected to the radio. This will enable us to add 5 GHz and 10 GHz bands to our satellite station in the future.

Our Flex-6700 includes a GPS Disciplined Oscillator (GPSDO) which provides an accurate and stable 10 MHz reference output to lock the 70cm and 23cm transverter frequencies. The 10 MHz Reference Distribution Amplifier expands the single 10 MHz on the Flex-6700 to drive up to 4 transverters or upconverters.

The two USB cables allow the Flex-6700 and SmartSDR to control the LPDA and PTT for the 70cm and 23 cm bands.

2m/70cm Shelf

The rackmount arrangement uses shelves which provide ventilation for the components and enable us to use zip ties to tie down all of the components. The photo above shows the layout of the shelf which contains the 2m LPDA, the 70cm Transverter and many of the RF interconnections. Velcro tape is used to secure the smaller components to the shelf.

2m/70cm Shelf RF Interconnection Details

The photo above shows the RF interconnections. The 70cm Transverter is on the upper left and the 2m LPDA is on the upper right. The rectangular boxes coming from these devices are the sensors for the WaveNode WN-2 Power and SWR Meter that we are using. They are terminated in 50-ohm dummy loads for initial testing. The DIPS device is center bottom and the 4-port device above it is the 28 MHz splitter. All of the interconnections are handled using 50-ohm BNC cables and the unused ports on the 28 MHz splitter are terminated with 50-ohm BNC terminators.

Rear View of Remote Gateway Rack

The photo above shows the rear of the unit. The 10 MHz Reference Distribution Amplifier (bottom center) and the two Industrial 12V powered USB hubs are visible at the bottom of the unit. The DC power distribution components are at the upper left and a set of Internet-controlled relays are at the upper right.

USB Connections via Hubs

One of the USB hubs fans out a single USB connection from the host PC to the USB controlled devices in the Remote GW rack. The other USB hub expands the USB outputs of the Flex-6700 to accommodate the control cables for the devices in the rack and the CAT cable which provides frequency data to the microHam SMD Antenna Controller.

Power Control and Distribution Design

Remote control and distribution of DC power to all of the devices in our Remote GW is an important design consideration. In addition to proper fusing, one must be able to remotely turn devices on and off remotely. The diagram above shows the power distribution and control architecture that we are using.

13.8 Vdc Power Distribution

RigRunner power distribution blocks are used to fuse and distribute power to all of the accessory devices in the rack.

Remote Gateway Power Controls

The RigRunner 4005i provides remote power control via the Internet for all of the major units and accessories in the rack. In addition to controlling power on/off states and providing electronic fusing, the RigRunner 4005i monitors voltage and current to the equipment in the Remote GW. These controls are accessed via a web browser and a network connection. Login/password security is also provided.

Remote Control Relay Unit

A microBit Webswitch device provides Internet controlled relays to manage various station functions including:

After some configuration of the Transverters and PTT controls in SmartSDR, the satellite portion of our Remote GW is up and running. There is quite a bit of software installation and configuration left to do and we’ll cover that in a future post.

You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Nashua Area Radio Society Youth Expo at Boxboro

Karen KC1KBW a BGHS Teacher Building a Kit

Karen KC1KBW a BGHS Teacher Building a Kit

The Nashua Area Radio Society put together a successful Amateur Radio Youth Exposition at the New England Amateur Radio Convention at Boxboro this year. Our exposition features over ten displays with hands-on activities…

Source: NARS Youth Expo at Boxboro – Nashua Area Radio Society

Anita AB1QB and I are continuing to work along with the Nashua Area Radio Society to encourage young people to become licensed and join the Amateur Radio Service.

NARS Team at Boxboro

Nashua Area Radio Society Team at Boxboro

The Nashua Area Radio Society recently hosted an Amateur Radio Exposition for Young People at the New England Amateur Radio Convention in Boxboro, MA. Our event featured Remote HF and Satellite GOTA stations, a kit build, and many other hands-on activities which were part of the over ten displays at the event.

You can read more and see photos from our Youth Expo via the link above. We will be holding another Amateur Radio Youth Expo as part of NETT at NEAR-Fest in Deerfield, NH in October. We hope to see some of our local friends there.

Fred, AB1OC

Fall Youth Events at Boxboro and NEAR-Fest

Quite a few Nashua Area Radio Society members have been working on a display to get young people and potential new Hams interested in Amateur Radio. Our display will be part of the New England Amateur Radio Convention in Boxboro, MA on September 8th and 9th. We are also planning a similar display for NEAR-Fest at Deerfield Fairgrounds, NH later in the fall. You can see more about our planned display and the associated hands-on activities via the following link.

Source: Fall Youth Events at Boxboro and NEAR-Fest – Nashua Area Radio Society

I want to share some information about an Amateur Radio event that we will be doing at the Boxboro, MA Ham Radio Convention in September. Our display and hands-on activities provide an introduction to Amateur Radio for young people and include information and a chance to try Amateur Radio activities such as:

You can read more about our plans for the event via the link above.

Morse Trainer Kit

Morse Trainer Kit

We’ve been working with Steve Elliot, K1EL to develop an inexpensive kit building project to include as part of our displays. We will be including a new kit building activity in as part of our display. Builders can purchase the Morse Trainer Kit shown above for $20 and build it at the show. We will provide soldering equipment and kit building mentors to help builders complete their kit. The package includes batteries and a printed manual. We will have these kits available for walk-up purchase at the show on both Saturday and Sunday.

I am also planning to provide forum presentation on the following topics on Saturday at Boxboro:

  • Creating Successful Youth Outreach Projects
  • Portable Satellite Station Design, Operation, and Planning for an upcoming ISS Crew Contact
  • STEM Learning for Young People via High Altitude Balloons Carrying Amateur Radio

You can view the Boxboro Forum schedule here.

I hope to see folks who follow our Blog at the New England at the Boxboro Convention. If you can make it, stop by our display or visit us in the forums and say “hello”.


Fred, AB1OC


Operating FT8 Remote on the 6m Band

FT8 Digital Remote Setup

FT8 Digital Remote Setup

I have been operating using the FT8 digital mode on the 6m band using our remote operating gateway quite a bit this summer. The SDR-based remote operating gateway in our station allows us to operate our station from other rooms in our home as well as from outside our QTH via the Internet. When I’m at home, I have computers set up with outboard monitors to create an operating setup for FT8 digital contacts on the 6m and other bands. The photo above shows this setup. Having the extra screen space and multiple laptops enables control of our station, making and logging QSOs, and checking propagation via Reverse Beacon Networks as we operate.

Radio and Logging System

Radio and Logging System

The main system is a windows laptop. It runs the SmartSDR software which operates the Flex-6700 Radio in our shack (upper right window below).

Flex-6700 SmartSDR and WSJT-X Weak Signal Digital Software

Flex-6700 SmartSDR and WSJT-X Weak Signal Digital Software

This laptop runs the WSJT-X software (left windows above) which conducts QSOs in FT8 and other weak signal modes and the JTAlert Software (lower right windows above) which interfaces WSJT-X to the DXLab logging suite. JTAlert displays all callsigns decoded by WSJT-X and compares them to my log to determine which potential contacts are new DXCC’s, Grids, States, etc. JTAlert adds contacts to my logs in DXLab when a QSO is completed using WSJT-X.

DXLab Suite Logging and Rotator Control Software

DXLab Suite Logging and Rotator Control Software

The windows laptop also runs the DXLab logging suite. DXLab handles logging of QSOs, one-click pointing of our antennas based upon the callsign being worked, and uploading contacts to LoTW, eQSL, and ClubLog for confirming contacts.

Reverse Beacon Network and Station Monitoring Computer

Reverse Beacon Network and Station Monitoring Computer

I like to use the second computer to monitor propagation and strength of my FT8 signal while operating.

PSKReporter RBN Monitoring on 6m

PSKReporter RBN Monitoring on 6m

I use two tools to assess propagation conditions while I am operating. The first is PSKReporter which is a Reverse Beacon Network (RBN) tool that is enabled by WSJT-X and most other digital mode software programs. Each time WSJT-X decodes a stations transmission, it reports the decoded callsign along with location and signal strength information to the PSKReporter website. This website then uses this information to display all of the stations that hear my and other’s transmissions in real-time. The RBN information is used to determine where a given band is open and as a tool to determine how much transmit power is needed to provide acceptable signal strength at stations that I am trying to work.

DXMaps Propagation Report on 6m

DXMaps Propagation Report on 6m

The DXMaps website shows a real-time map view of contacts being made on the 10m and higher bands. This second tool provides a real-time view of band conditions and opening on bands like 6m which have somewhat unpredictable propagation characteristics.

Together, these tools help to determine where to point antennas and what stations we can work on the 6m band.

The second laptop also runs Teamviewer remote control software. This provides access to the antenna switching controls, SWR and power monitoring equipment, station electrical power, and amplifier controls in our shack. These tools are important elements in safely operating and controlling our station when we are not in the same room as the radios and other equipment we are using.

I’ve been using the remote operating setup described here on the 6m band quite a bit over the last few weeks. I hope this post provides some ideas that other can use.


Fred, AB1OC

Remote Operating Enhancements

Updated Remote Operating Setup

Updated Remote Operating Setup

As explained in a previous article, we have been working on enhancing our FlexRadio 6700 based Remote Operating Setup to include additional remote control client options, better remote networking via the Internet, and better integration with our microHAM system.

Remote Operating Architecture

Remote Operating Gateway Architecture

This project involved the addition of the following capabilities to our base Remote Operating Setup:

These steps are now complete and we have some good results to share.

SmartSDR V2 Remote Connection

SmartSDR V2 Remote Connection

The first part of the upgrade was to update to SmartSDR V2. This upgrade enables much improved SmartSDR operation over the Internet. Our previous approach, which used a tunneled VPN connection combined with the previous versions of SmartSDR did not always perform well when used with low-bandwidth or high latency Internet connections. SmartSDR does much better in this area.

SmartSDR CAT Remote

SmartSDR CAT Remote

DAX Operating Remote

DAX Remote













Both the SmartSDR CAT and the SmartSDR DAX application have been updated to allow software on a PC being used to operate the FlexRadio SDRs over the Internet to gain access to CAT and sound interfaces associated with the radio.

FlexRadio Maestro Console

FlexRadio Maestro Console

We also added a Maestro Console to enhance the usability of the SDR radio portion of our Remote Operating Gateway. The Maestro is very easy to use and extends the available controls and display space which was limited when using just a laptop PC. The Maestro supports direct microphone connections for phone operation and also works with connected CW paddles for operation in CW mode. I have been using a single level paddle along with our Maestro as speeds of 22 WPM with full QSK. Sending CW at these speeds with the Maestro works well.

The Maestro has built-in WiFi and Ethernet connections and full support for SmartSDR V2’s connections over the Internet. The Maestro can operate from AC power or from an internal battery pack. I have a couple of spare rechargeable batteries for our Maestro to support longer operating sessions on battery.

TeamViewer VPN

TeamViewer VPN

We have been using a combination of TeamViewer Remote Control software and a router-based VPN solution to enable control of our antenna controllers and station power/amplifiers. This arrangement works well but most of our readers probably do not have a router which can support VPN connections or the networking knowledge to set up a secure VPN system.

A much simpler VPN solution can be realized by utilizing TeamViewer’s built-in VPN capability. You simply install TeamViewer on a PC in you shack which can access you station accessories and on your remote operating laptop or PC. You then enable TeamViewer’s VPN option and the configuration is complete.

TeamViewer VPN Connection

TeamViewer VPN Connection

We now use TeamViewer to set up both a VPN connection and a remote desktop control connection to a computer in our shack which can control amplifiers, power, and other station accessories associated with our Remote Operating Gateway We use TeamViewer in this way to control our microHAM Station Master Deluxe antenna controllers, RigRunner remote power controller, a microBit Webswitch device and an Elecraft KPA500 amplifier which are all part of our station’s Remote Operating Gateway.

DXLab Operating Remote

DXLab Operating Remote

With the addition of the SmartSDR and the updated TeamViewer/VPN setup, we can operate our station remotely over the Internet. We have tested our setup using a Wireless Hotspot modem and Verizon’s LTE service. The combination of our PC running the DXLab Logging Suite and the Maestro work great in this configuration.

We have found the need to initialize the networking configuration in a specific order to get everything running correctly. The steps that we use are as follows:

  1. Connect the laptop PC to the Internet
  2. Bring up the TeamViewer VPN connection
  3. Run SmartSDR on the laptop PC and login to SmartSDR Remote
  4. Bring up the DXLab’s Suite including Commander (currently, DXLab’s Commander has some issues connecting when the FlexRadio protocol is used. We have found that the KENWOOD protocol works fine.)
  5. Bring up the remote control application for the Elecraft amplifier and access our RigRunner power controller and microBit Webswitch units to turn on accessories as needed
  6. Initiate a second TeamViewer Remote Control connection and use it to run the microHAM remote antenna controller in a single window
  7. Shutdown SmartSDR on the laptop PC and bring up the connection to the radio via the Maestro.

There is obviously still some room for simplification in this initialization procedure. I expect that some simplification will come as all of the software involved becomes more mature and is further adapted for remote operation.

Once initialized properly, its simple to use the PC and Maestro combination to work SSB Phone or CW contacts. The DXLab Logging Suite will follow the radio, track modes, handle split operation, and allow control of our antenna rotators via DXView. We can click on spots in DXLab’s SpotCollector to automatically set the FlexRadio SDR’s mode, frequency, and split configuration. The Maestro and DXLab will stay in sync during tuning, mode changes, and other radio operations.

Remote Digital Operation using WSJT-X and FT8

Remote Digital Operation using WSJT-X and FT8

The final part of this project was to add the latest Version of the WSJT-X software to our Remote Operating client laptop PC to enable FT8 operation on the HF bands and MSK144 for Meteor Scatter work on 6m.

SmartSDR and JTAlert Supporting Remote FT8 Mode

SmartSDR and JTAlert Supporting Remote FT8 Mode

We do not use the Maestro for digital operation. We leave SmartSDR running on our remote laptop PC instead. We also use the JTAlert application to create an automated bridge between WXJT-X and the DXLab Logging Suite.

The combination of SmartSDR V2 and WSJT-X work great remotely. We have used this combination to make quite a few FT8 contacts on the HF bands as well as several Meteor Scatter contacts on 6m using MSK144 mode.

These enhancements to our Remote Operating Gateway have helped both Anita and me to operate more. I have our Maestro either in my home office or on a table in our kitchen where we can listen to the bands and work DX when the opportunities come up. Remote Operating, even its just from another room at your QTH, is great fun!

We should be able to begin the next step in our station upgrade plans – the addition of an Elecraft KPA1500 shared amplifier, in the near future. The new amplifier will enable our Remote Operating Gateway to operate at legal limit 1500w out on the HF bands and 6m.

Fred, AB1OC

Plans for 2017 Station Upgrades – Radio, Shared Amplifier, and Remote Op Enhancements

Flex-6700 Software Defined Radio Stack

Current Flex-6700 Remote Operating Gateway and Icom IC-7600 Transceiver

We have a number of station upgrades planned for this fall. Our planned upgrades include:

We always begin our station projects by updating our station design documents.

Remote Operating Architecture

Updated Remote Operating Gateway Architecture

Our Remote Operating enhancements will include:

The figure above shows an updated architecture for our Remote Operating Gateway which includes these enhancements. The planned Elecraft KPA1500 solid state amplifier will simplify the software associated with remotely controlling and monitoring the amplifier, tuner, and wattmeter components in our previous remote operating setup.

Icom IC-7610 SDR-Based Transceiver

Icom IC-7610 SDR-Based Transceiver

We have been quite impressed with the performance of our Icom IC-7300’s radio’s receiver. As a result, we have decided to upgrade the second radio in Anita’s operating position to an Icom IC-7610. We expect that the IC-7610’s receiver performance will be as good as or better than the IC-7300.

Icom IC-7610 External Display

Icom IC-7610 External Display

The Icom IC-7610 also provides a very nice external display capability which will allow us to take the best advantage of the radio’s pan adapter. We believe that the IC-7610 will integrate easily into our microHAM system. It should be a “drop-in” replacement for our current IC-7600. We hope to see the IC-7610 shipping before the end of this year.

Elecraft KPA1500 Legal Limit Solid State Amplifier

Elecraft KPA1500 Legal Limit Solid State Amplifier

Our final upgrade will be to add an Elecraft KPA1500 Solid State Amplifier. This amplifier provides a full 1500 watts out on all bands 160m – 6m. The new amplifier will bring the Icom IC-7610 and our FlexRadio SDR-Based Remote Operating Gateway up to full legal limit power. This will be especially helpful on the 6m band where both the IC-7610’s and the FlexRadio 6700’s excellent receiver performance will help us to take the best advantage of the extra power for Meteor Scatter and other weak signal work on 6m.

microHam Shared Amplifier

microHAM KPA1500 Shared Amplifier Design

Our microHAM Station Automation System can accommodate shared amplifiers. We will take advantage of this capability when we integrated the Elecraft KPA1500 into our station. The shared amplifier setup will also allow us to eliminate one of our bandpass filters. The KPA1500 amplifier integrates autotuner and wattmeter functions into the amplifier and provides a direct Ethernet interface for remote control and management. These enhancements should eliminate the need for several of the remote control server software applications that we are currently running on a PC in our shack. Also, we can manage all of these functions from a single client application on a remote client PC. These simplifications will make our remote operating gateway setup more reliable and easier to use.

FlexRadio Maestro Control Console

FlexRadio Maestro Control Console

We plan to share more on these projects in future posts here on our Blog. The FlexRadio Maestro and all of the other components that we need for Remote Operating Gateway enhancements have arrived. We will complete this part of our project in the very near future and post more here.

Also, it appears that the local control interface to the new Elecraft KPA1500 amplifier is nearly identical to that used by our current Elecraft KPA500 Amplifier. This means that we can begin our shared amplifier upgrades using the KPA500. We do not have a firm date for the IC-7610 to ship and that portion of our upgrade plans is likely to be our last step in the project.

Special thanks to Dave, K1DLM who has helped us with ideas for several aspects of this project.

Fred, AB1OC

Amazing DX Opening On The 12M Band

12m DX - XT2AW Burkina Faso

12m DX – XT2AW Burkina Faso

Today proved out some simple, tried and true advice for me – it pays to take some time and tune through the bands. I just got a Maestro Remote Control Device for our FlexRadio SDR and I took a break around lunchtime to tune through the higher HF bands to see what I could hear. We use a Flex SDR as a Remote Operating Gateway into our station and the Maestro allows me to run our station over our home network with going down to the shack.

I am not sure why but I decided to give the 12m band a look today. When I did, I was stunned! It is about noon time and the 12m band is wide open between Africa and the US!

I worked two DX stations on 12m SSB. The first was XT2AW, Harald in Burkina Faso. Harald was working split and was not real loud but I had no trouble completing the contact with him. Excited, I tuned across 12m some more and found an old friend – Theo, ZS6TVB in South Africa. I had a very nice QSO with him. We both marveled over the propagation on the 12m band that we were experiencing. He was 57-58 here in New Hampshire!

12m DX - ZS6TVB South Africa

12m DX – ZS6TVB South Africa

The sunspot conditions are pretty weak (SFI 85, SN 26) to create such a good opening on 12m. I believe that we may be experiencing Transequatorial Propagation (TEP) which can provide a significant propagation enhancement on paths with traverse the equator. Anita and I experienced similar TEP propagation on 10m when we were on Bora Bora Island early in 2012 with similar solar conditions.

It just goes to show that it pays to tune the upper HF bands. Especially on days when “they are not open”. Also, 10m also appears to be open to Africa right now – I am hearing a station in Mauritania

Fred, AB1OC