6m VUCC In A Day – ARRL June VHF Contest

6M VUCC Operating Award

6M VUCC Operating Award

The 6m Band is one of my favorite bands. The combination of its unpredictability and the amazing openings that it can produce certainly makes 6m The Magic Band for me!

Fred’s (AB1QB) First Place Finish in NH – 2013 ARRL June VHF Contest

Fred’s New Hampshire First Place Finish in the ARRL June VHF Contest

I haven’t had the chance to work the ARRL June VHF Contest from our home station for several years. A combination of Nashua Area Radio Society activities and preparations for ARRL Field Day have taken a higher priority. ARRL June VHF is a great contest and I was looking forward to working it this year. A few days before the contest Anita and I were talking about the contest and she suggested that I do a 6m Digital Entry. E-skip has been pretty good on 6m this year and we wanted to sort out how we’d do digital and 6m for our upcoming 2020 Field Day Operation from our home so I decided to take Anita’s advice and focus on 6m Digital for June VHF. I entered the contest in the Low-Power Category.

June VHF Operating Setup

6m VUCC

AB1OC Operating in 2020 June VHF

We built a Remote Operating Gateway that allows our station to be operated both over the Internet and from any room in our home via our Home Network. I decided to set up a 6m Digital Station upstairs in our dining room so I could be with Anita more during the contest. The setup consisted of a laptop PC with an outboard monitor and a Flex Maestro as the client for the Flex 6700 SDR in our shack.

Completed Antenna Stack On New Tower

Completed Antenna Stack on our VHF Tower

We have three antennas for 6m – one on our VHF Tower and two via the SteppIR DB36 yagis with 6m kits on our main tower.

Delta Loop On Tower

SteppIR DB36 Yagis on our Main Tower

The three antennas can be pointed in different directions and selected instantly via the computer. This provided to be an advantage during the contest. I kept one on Europe, one point due West, and the third pointed at the Tip of Florida and the Caribean during the contest.

6m VUCC

Operating Setup – N1MM+ and WSJT-X

Having two monitors (the Laptop and an outboard one) allow me to arrange all of the N1MM+ Logger and WSJT-X windows for efficient operating. The image above shows a snapshot of the screen layout during the contest. N1MM+ has some nice features that integrated with WSJT-X to make it easy to spot new grids (Multipliers) and stations that have not yet been worked. The windows on the very right side allowed me to control antenna switching and monitor power and SWR while operating. I use the PSTRotator application (lower-left center to turn my antennas.

6m Band Conditions

6m VUCC

6m PSK Reporter On Sunday Evening

Band conditions on 6m were amazing from here in New England almost the entire contest period! The band was open right at the start of the contest on Saturday and remained open to 11 pm local time on Saturday evening. I was up early on Sunday and was working folks in the Northeastern Region right from the start. After being open all day on Sunday, the band shut down around 5 pm local time and I was afraid that the fun on 6m might be over. I ate some dinner and took a 45-minute nap and got back to my station at around 6:30 pm. About 15 minutes after I resumed, 6m opened again to most of the United States and I was able to work DM and DN grid squares in the Western States! The band stayed open right until the end of the contest at 11 pm local time.

What About the VUCC…

6m VUCC

100 Grids Worked on 6m

Conditions on 6m were so good on Saturday that I almost worked a 6m VUCC by 11 pm on Saturday evening when the band closed. I had 93 grids worked on 6m in just 8 hours! The band opened again early on Sunday morning and I worked my 100th grid square before 10 am – working a 6m VUCC in less than 18 hours!

6m VUCC

Final 6m Grids Worked

By the end of the contest, I had worked a total of 162 Grids! They ranged from the West Coast of the US to Western Europe and from Southern Canada to Northern South America.

6m VUCC

6m Grids Worked During 2020 June VHF

The image above shows most of the 6m grids that I worked plotted on a world map (the EU grids are not shown).

6m VUCC

Final Claimed Score

I was able to make a total of 402 unique contacts on 6m by the end of the contest with a final Claimed Score that was a bit over 65K. All of my 6m contacts during the contest were made using a combination of FT8 and FT4 modes on 6m.

New Ones on 6m for AB1OC

6m VUCC

AB1OC Worldwide 6m Grid Map

I was hoping to work some all-time new Grids and June VHF did not disappoint. I worked a total of 11 new Grids and one new DXCC (Dominica) on 6m during the contest. The image above shows my worldwide grid coverage including the new ones worked during June VHF (my grids in Argentina and Uruguay are not shown above). I now have worked 432 grids on 6m and have confirmed 408 of them with 63 DXCC’s worked and 62 confirmed on the Magic Band.

Summing It All Up…

I must say that I had as much fun working 6m during June VHF this year as I have ever had in any contest! The band openings on 6m were really good and I was busy making new contacts for the entire time that I operated. The combination of the 6m Band and the contest certainly made some Magic for me!

Fred, AB1OC

Perspectives on a 6m DX Opening

6m DX Opening to Europe - PSK Reporter

6m DX Opening to Europe – PSKReporter

I’ve had a chance to operate on the 6m Band this past week. We are approaching the prime time for the summer Es (E-Skip) season here in the Northeastern United States. As a result, I wanted to see how propagation on the 6m band might be unfolding during this spring Es season. I was fortunate to catch a typical limited DX opening on the 6m band between our location here in New England and Europe. I thought that it might be helpful for those who are relatively new to the 6m band to see what this was like.

DX Opening Begins - JTDX Software View

A 6m DX Band Opening Begins – JTDX Software View

I spent some time on and off yesterday calling CQ and monitoring the 6m band using the JTDX software and FT8 mode. FT8 now dominates most of the activity on the 6m band. This is a result of a combination of FT8’s weak-signal performance and available reverse beacon tools such as PSKReporter. As you can see from the JTDX screenshot above, the 6m band was basically only open to the United States here until about 16:58z. At that point, I weakly decoded CT1ILT. This station faded almost immediately and I was unable to make a contact.

Approximately 4 minutes later, the 6m band opened solidly to Spain and France and quite a few stations in this area of Europe appeared with relatively strong signals.

6m DX Opening to Europe - Spotlight Area Propagation

6m DX Opening to Europe – Spotlight Area Propagation (PSKReporter)

As you can see from the PSKReporter screenshot above (taken near the end of the band opening), the probation on 6m was quite strong but limited to a very specific area and heading in Europe. This is typical of limited double-hop Es propagation. We most likely had two Es clouds aligning in such a way that a narrow path of propagation had been created on the 6m band.

A 6m DX Band Opening In Full Swing - JTDX Software View

A 6m DX Band Opening In Full Swing – JTDX Software View

The view above shows the 6m band opening in full-swing. I was hearing 5-6 strong stations from France, Spain, and Italy almost immediately. These stations are all on a relatively narrow range of headings center at about 65 degrees from my QTH. I am scrambling to work the stations that represented new grid squares for me. I am using JTAlert as a bridge to my logger (DXLab Suite) and it is telling me that 2-3 of the station in the mix are in grid square that I have not yet worked on the 6m band.

A 6m DX Band Opening Comes to an End - JTDX Software View

A 6m DX Band Opening Comes to an End – JTDX Software View

Like all good things, the 6m DX opening had to come to an end. As you can see above, the 6m band closed as rapidly as it opened, leaving me calling CQ with no takers to work in Europe.

Contacts Made During the 6m DX Opening

Contacts Made During the 6m DX Opening

The total duration of this opening was about 20 minutes. The contacts that I made during this period are shown above. During the brief opening, I was able to make a total of 11 contacts with a limited set of grid squares in Europe. Most of the signals were quite strong (see the Sent and Rcvd columns in my log above). During the opening, I worked 5 new grid squares that were centered around the border between France and Spain.

AB1OC 6m Grids Worked and Confirmed

AB1OC 6m Grids Worked and Confirmed

By this morning, three of the five new grids that I worked had already confirmed on LoTW. Just for fun, I plotted my 6m grid progress on the Gridmapper website. I keep a copy of the Gridmapper view of my log by my operating area as a reference that I use in conjunction with PSK Reporter to help me identify 6m band openings that might provide opportunities to work new grids.

I hope that this article gives you some idea of the nature of 6m DX openings. The opening described here is pretty typical in that:

  • The band open (and closed) suddenly without much warning
  • The propagation was very good with many strong signals being decoded and worked at once
  • The opening was of short duration lasting only about 20 minutes
  • The band closed as rapidly as it opened
Monitoring the 6m Band at AB1OC

Monitoring the 6m Band at AB1OC

In order to work 6m DX, this experience emphasizes the need to monitor the 6m band for DX openings on a regular basis. This is most easily done using PSKReporter. The pattern of DX openings on 6m to Europe from here in New England is such that EU DX openings typically begin south of us and progress northward. I use our Remote Operating Gateway, a Flex-6700 SDR based setup, to monitor the 6m band for DX openings while I work here in my office. You can see the 6m FT8 setup here in my office running in the monitor-mode above.

FlexRadio Maestro Console

FlexRadio Maestro Console

I use the Maestro here in my office as my SDR client.

I hope that this information has been useful to our readers. As you can see from this example, the 6m Band is called the Magic Band for good reason. It is very exciting to be able to catch and work a good DX opening on 6m. The FT8 mode has both increased the level of activity on the 6m band and made 6m available to many stations with simple antennas and 100W transceivers. You can learn more about how to get started with FT8 on 6m here.

As I sit here writing this, the 6m band just opened to Austria and Hungry! Have to go work some DX on the 6m band…

Fred, AB1OC

PTT Switch for Remote Operation

FT8 Digital Remote Setup

Remote Operating Setup for AB1OC-AB1QB Station

Here’s an article by Nashua Area Radio Society member Mark, KC1IML that explains how to build a PTT switch for remote operation of our station via SmartSDR. Mark and others have been using our station remotely to work DX and operate in the Nashua Area Radio Society’s Student-Teacher Contest Series.

Source: PTT Switch for Remote Operation – Nashua Area Radio Society

And here is a link to a more current USB to serial adapter for use in this application. You can learn more about the Remote Operating Gateway setup at AB1OC-AB1QB here.

Fred, AB1OC

Satellite Station 4.0 Part 10 – Adding 23 cm To Our Satellite SDR

Satellite SDR

DEM L24TX Tx Converter

We’ve recently received our L24TX Transmit Converter from Down East Microwave. The unit is compact, simple, and produces up to 25W output in the satellite section of the 23 cm band (1260 MHz – 1270 MHz, actually 24 cm). The L24TX is a transmit-only device that is intended to enable L-band uplinks for Satellite use. This article is about our most recent project which involved integrating the L24TX into our Flex SDR Satellite System.

Satellite SDR

24 cm Tx Converter Rear Panel

Connecting the unit is straightforward. The unit requires an IF input, a 10 MHz reference oscillator, DC power, and a transmit keyline. The later two inputs are provided via a 7-pin connector and a DEM supplied cable. We ordered our unit with the following configuration options:

  • IF 28 Mhz = 1260 MHz output
  • Max IF Drive Level – +10 dBm
  • Fan and Case configured for mounting in the shack

Fortunately, our feedlines for the 23/24 cm band are hardline-based and relatively short. The unit is also available in a configuration that would enable it to be remotely mounted in an enclosure on a tower.

Satellite SDR

24 cm Tx Converter Installation in our Remote Gateway SDR Rack

The unit fits nicely into our Remote Gateway SDR Rack. The L24TX does not include a power output display so we used a 23/24 cm sensor and our WaveNode WN-2 Wattmeter to monitor output power from the unit. The unit does have leads that output a voltage that is proportional to output power. This could be used to build a power output bar display or meter. the front panel indicates display a power-on indication, lock to the 10 MHz clock input, and Tx when the unit is transmitting.

Satellite SDR

Overall Satellite SDR System Design

Integration into our Satellite SDR System was straightforward. Our system already included splitters for the 10 MHz GPSDO and the 28 MHz Transverter outputs from our Flex 6700 SDR. I had hoped to use one of the leads from the SmartSDR BITS cable we are using to key our 70 cm Transverter but the BITS cable did not have an adequate drive level to key the L24TX.

Satellite SDR

Remote SDR Gateway Tx Band Settings

Fortunately, the Flex 6700 has configurable TX1-TX3 outputs for keying devices like Transverters. The use of the TX2 output to key the L24TX was easily configured in the SmartSDR’s TX Band Settings.

Satellite SDR

23 cm Tx Converter Setup in SmartSDR

It is necessary to configure SmartSDR for the L24TX. The required settings are in the XVTR options tab. In addition to configuring the mapping between the Flex 6700’s XVTR IF frequency and the unit’s output Frequency, one needs to set the IF drive levels. We used the default drive level of 6.0 dBm and adjusted the IF Gain Control on the L24TX until the full output of 25W was reached while transmitting a tone. The correct adjustment is apparent when further gain increases do not provide a proportional increase in output power. The proper setting of the RF drive and gain will keep the L24TX’s output in its linear range of operation.

Satellite SDR

Final Power Distribution Design

The L24TX is powered via the power distribution system in our Satellite SDR Rack. Control and current limiting for the 2m LPDA, 70 cm Transverter, and the L24TX are individually controlled via a RigRunner 4005i IP Power Controller.

Satellite SDR

SDR Satellite System Remote Power Control via a RigRunner 4005i

The RigRunner is remotely accessible over the Internet and our network via a password-protected web interface. This enables us to easily power down or power cycle individual components in the Satellite SDR System remotely.

MacDoppler Tracking AO-91

MacDoppler Tracking AO-91

With all of the hardware installation and calibration steps complete, we are turning our attention to the software side of the setup. We will be using MacDoppler for satellite tracking and VFO control of our Satellite SDR System. This creates a need to connect the MacDoppler program which runs on a Mac to SmartSDR and the Flex 6700 which is a Windows-based system. Fortunately, MacDoppler provides a UDP broadcast mode that transmits az/el antenna position information as well as data to control radio VFOs to adjust for Doppler shift.

Satellite SDR

FlexBridge Software Beta

We are working on a custom windows application called FlexBridge to enable MacDoppler to run our Flex SDR-based Satellite System. FlexBridge runs on a Windows PC. It receives and parses the UDP broadcast messages from MacDoppler and uses the FlexLib API to properly configure and control the Flex SDR’s VFOs.

Satellite SDR

SmartSDR Operating With AO-92 in L-V Mode

At present, FlexBridge can configure and control SmartSDR (or a Maestro Client) that is operating our SDR Satellite System. The screenshot above shows the MacDoppler, FlexBridge, SmartSDR combination operating with AO-92 in L/V mode. This software is still an in-progress development and we plan to add the ability for FlexBridge to connect to the radio via SmartLink as well as support for the Green Heron RT-21 Az/El Rotator Controller that we are using. We’ll be sharing more about FlexBridge here as the software development progresses.

The next step in our Satellite Station 4.0 Remote Gateway project will be to move our satellite antenna controls and feedlines into the shack and begin testing the complete setup using local control. Once this step is complete, we’ll focus on the final steps to enable remote operation of our satellite station via the Internet.

Here are links to some additional posts about our Satellite Station 4.0 Projects:

Fred, AB1OC

Final Field Day Station Test

What goes into an 11A Field Day? Well, for starters, 13 stations! We got together at AB1OC/AB1QB’s QTH a couple of weekends ago to set up ALL of our Field Day stations at once and test them together. Here’s a rundown of our final Field Day Station Test…

Source: Final Field Day Station Test – Nashua Area Radio Society

The Nashua Area Radio Society does a pretty big Field Day Operation each year. We will be 11A for Field Day 2019 with 4 towers up. Did you ever wonder what goes into pulling off a Field Day this large? Well, it’s all about planning and preparation. Take a look at the article above to see some of the preparation that we are doing for Field Day 2019.

Fred, AB1OC

Satellite Station 4.0 Part 8 – GPSDO Frequency Locking

Remote Gateway Rack with Satellite Additions

Frequency accuracy and stability become more challenging for transceivers that operate at 400 Mhz and above. Our 4.0 Satellite Stations operate at frequencies approaching 1.3 GHz and we want to be sure that their operating frequencies are accurate and stable. Our Flex-6700 SDR includes a GPS Disciplined Oscillator (GPSDO) so the radio and all of the transverters associated with the radio use the radio’s GPS disciplined 10 MHz output for frequency synchronization.

Portable Satellite Station 4.1

We wanted to add GPSDO frequency control to the Icom IC-9700 Transceiver in our Portable Satellite Station 4.1 station. Icom just released a version 1.11 firmware update for the IC-9700 which makes this possible.

Leo Bodnar GPSDO Kit

We choose a GPSDO from Leo Bodnar. The unit is compact, USB powered, and comes in a nice case which includes a GPS antenna and a USB cable. The unit has two GPS disciplined frequency outputs which can be configured for a wide range of frequencies and levels via a Windows application.

GPSDO Connected to an IC-9700

The GPSDO is connected to the 10 MHz reference input on the back of the IC-9700 with a BNC to SMA cable and the GPSDO is powered via a USB connection to our iMac. We configured the GPSDO output frequency to 10 Mhz and for an output level of +7.7dBm (drive setting 8mA). We also added a 20 dB pad in line with the GPSDO output to better match the drive level requirements of the IC-9700’s 10 MHz input.

Locked GPSDO

The GPSDO will lock in a very short period of time (less than 1 minute) once GPS antenna and power connections are made the unite t. The unit has a red LED on each of its outputs and the unit is GPS locked when the LEDs are on and not flashing.

Configured and 10 MHz Input Locked IC-9700

The last step in the setup process is to configure the IC-9700 to sync its reference frequency to the 10 MHz input. This is easily done in the IC-9700’s Set/Function Menu.

It was pretty easy to add GPSDO locking to the IC-9700 and the arrangement described here works well. While this upgrade is not essential for satellite operation, it’s nice to know that our satellite transceiver frequencies are accurate and stable.

You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

 

Satellite Station 4.0 Part 7 – Flex SDR Satellite Transceiver

Flex-6700 SmartSDR in Satellite Mode

A major part of our plans for Satellite Station 4.0 includes the ability to operate our home satellite station remotely over the Internet. We’ve been using our Flex-6700 Software Defined Radio (SDR) as a Remote Operating Gateway (GW) on the HF Bands and 6m for some time now. Our latest project is to upgrade our Remote Operating GW to support satellite operations on the 2m, 70cm, and 23cm bands.

Remote Gateway Rack with Satellite Additions

Adding the additional bands for satellite operations involves adding a 2m Amplifier, a 70cm Transverter, and a 23cm Upconverter to our SDR-based Remote GW. We decided to repackage our Remote GW set up in a rack mount cabinet on casters. This allows all of the required gear to be placed under the desk in our station in a way that is neat and reliable.

We also added an Ethernet Switch, a pair of USB hubs, and upgraded power and remote controls to improve our ability to manage our station remotely and to simplify the interconnections between our Remote GW and the rest of our station. The final assembly mounts all of the components in the rack on 5 levels as follows:

The purpose of these components is explained in more detail below.

All of these devices are powered from 13.8 Vdc station power to avoid the potential for noise from wall wart transformers inside the rack. Also, attention was paid to the isolation of the digital and RF components on separate levels to minimize the chance that noise from digital signals would leak into the RF chains.

Satellite SDR

Remote Satellite SDR System Design

The diagram above shows how the added components for the satellite bands interconnect with the Flex-6700. The new components include:

The Flex-6700 can generate and receive signals on the 2m band but it does this at IF power levels. The 2m LPDA brings the IF power level up to a maximum of 75 watts. The DIPs device enables the Flex-6700 to operate in U/v, V/u, and L/v modes.

The 28 MHz splitter allows a total of 4 transverters/upconverters to be connected to the radio. This will enable us to add 5 GHz and 10 GHz bands to our satellite station in the future.

Our Flex-6700 includes a GPS Disciplined Oscillator (GPSDO) which provides an accurate and stable 10 MHz reference output to lock the 70cm and 23cm transverter frequencies. The 10 MHz Reference Distribution Amplifier expands the single 10 MHz on the Flex-6700 to drive up to 4 transverters or upconverters.

The two USB cables allow the Flex-6700 and SmartSDR to control the LPDA and PTT for the 70cm and 23 cm bands.

2m/70cm Shelf

The rackmount arrangement uses shelves which provide ventilation for the components and enable us to use zip ties to tie down all of the components. The photo above shows the layout of the shelf which contains the 2m LPDA, the 70cm Transverter and many of the RF interconnections. Velcro tape is used to secure the smaller components to the shelf.

2m/70cm Shelf RF Interconnection Details

The photo above shows the RF interconnections. The 70cm Transverter is on the upper left and the 2m LPDA is on the upper right. The rectangular boxes coming from these devices are the sensors for the WaveNode WN-2 Power and SWR Meter that we are using. They are terminated in 50-ohm dummy loads for initial testing. The DIPS device is center bottom and the 4-port device above it is the 28 MHz splitter. All of the interconnections are handled using 50-ohm BNC cables and the unused ports on the 28 MHz splitter are terminated with 50-ohm BNC terminators.

Rear View of Remote Gateway Rack

The photo above shows the rear of the unit. The 10 MHz Reference Distribution Amplifier (bottom center) and the two Industrial 12V powered USB hubs are visible at the bottom of the unit. The DC power distribution components are at the upper left and a set of Internet-controlled relays are at the upper right.

USB Connections via Hubs

One of the USB hubs fans out a single USB connection from the host PC to the USB controlled devices in the Remote GW rack. The other USB hub expands the USB outputs of the Flex-6700 to accommodate the control cables for the devices in the rack and the CAT cable which provides frequency data to the microHam SMD Antenna Controller.

Power Control and Distribution Design

Remote control and distribution of DC power to all of the devices in our Remote GW is an important design consideration. In addition to proper fusing, one must be able to remotely turn devices on and off remotely. The diagram above shows the power distribution and control architecture that we are using.

13.8 Vdc Power Distribution

RigRunner power distribution blocks are used to fuse and distribute power to all of the accessory devices in the rack.

Remote Gateway Power Controls

The RigRunner 4005i provides remote power control via the Internet for all of the major units and accessories in the rack. In addition to controlling power on/off states and providing electronic fusing, the RigRunner 4005i monitors voltage and current to the equipment in the Remote GW. These controls are accessed via a web browser and a network connection. Login/password security is also provided.

Remote Control Relay Unit

A microBit Webswitch device provides Internet controlled relays to manage various station functions including:

After some configuration of the Transverters and PTT controls in SmartSDR, the satellite portion of our Remote GW is up and running. There is quite a bit of software installation and configuration left to do and we’ll cover that in a future post.

You can find other articles about our Satellite Station 4.0 project here:

Can learn more about the SDR-based Remote Operating Gateway at our station here.

Fred, AB1OC

Satellite Station 4.0 Part 5 – New IC-9700 Transceiver

Portable Satellite Station 4.0

Portable Satellite Station 4.0

The new Icom IC-9700 transceiver has begun shipping and we’ve recently added one to our Portable Station. The addition of the IC-9700 completes a key part of our Satellite Station 4.0 upgrade plans.

New IC-9700 In Satellite Mode

New IC-9700 In Satellite Mode

The IC-9700 is based upon Icom’s direct sampling SDR platform. It supports all modes of operation on the 2m, 70cm, and 23 cm bands. The radio also supports satellite modes and D-STAR.

MacDoppler Controlling the IC-9700

MacDoppler Controlling the IC-9700

The new IC-9700 replaced the IC-9100 in our Portable Satellite Station. An updated version of MacDoppler is available which supports the IC-9700 and we tested MacDoppler using both the USB and CI-V interfaces. In both cases, MacDoppler handled the new radio including band and mode selection, doppler correction, and access-tone setting properly. Our setup uses an iMac running MacDoppler and MacLoggerDX for radio control, antenna control, and logging and a windows laptop running UISS and MMSSTV for APRS and SSTV. Our setup was easily accomplished by connecting the IC-9700’s CI-V interface to the iMac and the USB interface (for audio and PTT) to our windows laptop.

IC-9700 Display and Waterfall - Working FO-29

IC-9700 Display and Waterfall – Working FO-29

We’ve made about 50 contacts with the IC-9700 so far. The radio is a pleasure to use. The touch screen layout and functions are very similar to the IC-7300 and one does not need to spend much time with the manual to become comfortable using the radio. The Spectrum Scope and associated waterfall are really nice for operating with linear transponder satellites. The screenshot above shows the IC-9700 display while working contacts using FO-29. As you can see, it is very easy to see where stations are operating in the passband of a linear transponder. The Spectrum Scope also makes it very easy to locate your signal in the satellite’s downlink and then adjust the uplink/downlink offset for proper tone.

We’ve also done a bit of APRS operation through the ISS using the IC-9700 and the UISS software. The direct USB interface was used to a windows laptop for APRS. Setting up PTT and the proper audio levels were straightforward and the combination of MacDoppler controlling the VFO in the radio and the PC doing the APRS packet processing worked well.

The IC-9700 can power and sequence our external ARR preamplifiers and we plan to use this capability to eliminate the outboard sequencers that we are currently using with our preamps. We’ll need to climb our tower to change the preamps over to be powered through the coax before we can complete the preamp control changeover.

All in all, we are very happy with the new IC-9700 for Satellite operations. We’ve also noticed that quite a few satellite operators also have the new IC-9700 on the air.

You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Operating FT8 Remote on the 6m Band

FT8 Digital Remote Setup

FT8 Digital Remote Setup

I have been operating using the FT8 digital mode on the 6m band using our remote operating gateway quite a bit this summer. The SDR-based remote operating gateway in our station allows us to operate our station from other rooms in our home as well as from outside our QTH via the Internet. When I’m at home, I have computers set up with outboard monitors to create an operating setup for FT8 digital contacts on the 6m and other bands. The photo above shows this setup. Having the extra screen space and multiple laptops enables control of our station, making and logging QSOs, and checking propagation via Reverse Beacon Networks as we operate.

Radio and Logging System

Radio and Logging System

The main system is a windows laptop. It runs the SmartSDR software which operates the Flex-6700 Radio in our shack (upper right window below).

Flex-6700 SmartSDR and WSJT-X Weak Signal Digital Software

Flex-6700 SmartSDR and WSJT-X Weak Signal Digital Software

This laptop runs the WSJT-X software (left windows above) which conducts QSOs in FT8 and other weak signal modes and the JTAlert Software (lower right windows above) which interfaces WSJT-X to the DXLab logging suite. JTAlert displays all callsigns decoded by WSJT-X and compares them to my log to determine which potential contacts are new DXCC’s, Grids, States, etc. JTAlert adds contacts to my logs in DXLab when a QSO is completed using WSJT-X.

DXLab Suite Logging and Rotator Control Software

DXLab Suite Logging and Rotator Control Software

The windows laptop also runs the DXLab logging suite. DXLab handles logging of QSOs, the one-click pointing of our antennas based upon the callsign being worked, and uploading contacts to LoTW, eQSL, and ClubLog for confirming contacts.

Reverse Beacon Network and Station Monitoring Computer

Reverse Beacon Network and Station Monitoring Computer

I like to use the second computer to monitor the propagation and strength of my FT8 signal while operating.

PSKReporter RBN Monitoring on 6m

PSKReporter RBN Monitoring on 6m

I use two tools to assess propagation conditions while I am operating. The first is PSKReporter which is a Reverse Beacon Network (RBN) tool that is enabled by WSJT-X and most other digital mode software programs. Each time WSJT-X decodes a station’s transmission, it reports the decoded callsign along with location and signal strength information to the PSKReporter website. This website then uses this information to display all of the stations that hear my and other’s transmissions in real-time. The RBN information is used to determine where a given band is open and as a tool to determine how much transmit power is needed to provide acceptable signal strength at stations that I am trying to work.

DXMaps Propagation Report on 6m

DXMaps Propagation Report on 6m

The DXMaps website shows a real-time map view of contacts being made on the 10m and higher bands. This second tool provides a real-time view of band conditions and opening on bands like 6m which have somewhat unpredictable propagation characteristics.

Together, these tools help to determine where to point antennas and what stations we can work on the 6m band.

The second laptop also runs Teamviewer remote control software. This provides access to the antenna switching controls, SWR and power monitoring equipment, station electrical power, and amplifier controls in our shack. These tools are important elements in safely operating and controlling our station when we are not in the same room as the radios and other equipment we are using.

You can learn more about the Remote Operating Gateway setup at AB1OC-AB1QB here.

I’ve been using the remote operating setup described here on the 6m band quite a bit over the last few weeks. I hope this post provides some ideas that others can use.

73,

Fred, AB1OC