EME Station 2.0 Part 2 – Excavation, Footings, and Conduits for New Tower

EME Tower

FInished Tower Base and Cable Conduits

The first part of our EME project is to put up a new tower to support our antennas. Our plans call for a 26′ tower built using three Rohn 55G tower sections. Four feet of the first section of the tower is cemented in a concrete footing to anchor the tower’s base. The tower is also going to be guyed to ensure that it is very stable.

EME Tower

Digging Footings for our New Tower

We are working with Matt Strelow, KC1XX and Andrew Toth of XX Towers to put up our new tower. Matt brought out his tractor and dug the footings for our tower and for the associated conduits that will carry coax and control cables to our shack. The photo above shows the completed hole and form for the main tower base. Matt is working on the footings for one of the three guy anchors.

EME Tower

First Tower Section and Rebar Cage

Here’s a closer look at the tower base. The footing includes a rebar cage to reinforce the concrete footing. There is also 6″ of crushed stone in the bottom of the hole that the tower legs sit it. It is very important that the bottoms of the tower legs remain open and do not become plugged with cement so that water in the legs can drain. If the legs cannot drain properly, water will accumulate and freeze. This can split open the tower legs and ruin the tower.

EME Tower

Cable Conduits with Drains

We also installed two conduits (a 4″ and a 2″ run of schedule 80 conduits) from the base of our tower to our shack. These conduits will carry coax feed lines and control cables to our new tower. We used a pair of 22° elbows to create a smooth transition to bring the conduits out of the ground. This will ensure that our hardline and other coax cables can be placed in the conduits without creating excessive bends.

Conduits will fill with water even if they are sealed. This happens as a result of the condensation of water in the air. To prevent our conduits from filling with water, we created two drain pits at the bottom of the trench at the two lowest spots in the conduit runs and filled them with stone. We drilled a few holes in the bottom of the conduits above the drain pits to allow the water to drain so our cables will remain dry.

EME Tower

Cadweld’ed Ground Cable Bonded to a Ground Rod

We also created a bonding ground cable run from our new tower to the ground system at our shack entry. The bonding system was created by driving an 8′ ground rod every 10′ in the trench between our new tower and the perimeter ground around our house.

#2 stranded copper ground cable was Cadweld’ed to each ground rod to create a ground path to bond the tower to the perimeter grounding system around our house. Using a Cadweld system is simple and produces strong connections that will not deteriorate.

Here’s a video that shows our a Cadweld is made. We’ll cover completing the ground connections to the tower and the perimeter grounding system in a future article.

EME Tower

Completed Footings – Ready to Pour Cement

Finally, we used some sections of rebar to firmly support the guy anchor rods prior to pouring the cement. If you look closely, you can see a portion of the rebar material in one of the guy anchor footings in the photo above.

EME Tower

Cement Mixer

The next step in this part of our project was to pour the cement. A large cement mixer brought the proper cement mix to our QTH and Matt used his tractor to transport the cement from the mixer to the forms. We did a bit of finishing work on the cement base for our tower and let the cement dry for a few days.

EME Tower

FInished Tower Base and Cable Conduits

The last step was to remove the forms and backfill the footings. A little work with a cement finishing block was done on the cement base to round off the rough edges left by the forms. The cable conduits emerge from the ground next to the tower base. You can also see one end of the copper bonding cable next to the conduits as well.

EME Tower

Completed Guy Anchor

Here’s one of the completed guy anchor rods after backfilling. We are going to let the cement harden for a couple of weeks and then we’ll complete the construction of our new tower.

Here are some links to other articles in our series about our EME Station 2.0 project:

Fred, AB1OC

New 70cm Yagi

M2 Antenna Systems 432-9WLA Specifications

M2 Antenna Systems 432-9WLA Specifications

We decided to replace our current 70cm yagi with a newer, higher performance one from M2 Antenna Systems. We choose the M2 432-9WLA. The new antenna has higher gain and a cleaner pattern than our current 70cm yagi. It also has a longer boom.

New Yagi Ready For Installation

New Yagi Ready For Installation

The first step in the project was to assemble the antenna and check its SWR on the ground. The elements on an antenna like this typically vary by small amounts and are usually not arranged from shortest to longest. It is important to carefully measure each element during installation to confirm that each element is installed at the correct location on the boom.

The folks at M2 Antenna Systems made up a custom boom support truss for us. This is important given the potential for ice and snow accumulation that we face here in New England. We also made up a section of LMR-600uF coax to connect the antenna to the feedline and preamp system on our tower.

Driven Element Details

Driven Element Details

The new antenna uses a Folded Dipole style feed point. This system is essentially a T-matching arrangement where the two sides of the driven element are fed 180 degrees out of phase. It is important to set the locations of the shorting blocks carefully to ensure proper operation of the driven element and a resulting low SWR.

Yagi Going Up The Tower

Yagi Going Up The Tower

Matt, KC1XX, and Andrew from XXTowers handled the installation of the new Yagi on our tower. The installation involved climbing our 100 ft tower and the 25 ft mast at the top to remove the old yagi and install the new one. Note the careful rigging of the new antenna and associated feedline. This allows the new antenna to be pulled up the tower without damaging it.

Climbing a mast is not for the faint at heart! An installation like this one is clearly a job for experienced professionals. Andrew makes this task look easy. Our tower camera captured some video (click on the image above to play) of Andrew’s handy work.

Completed Installation

Completed Installation

The new yagi (top antenna in the picture above) is installed on a 5 ft fiberglass mast extension. The extension is used to ensure that the antenna does not “see” a metal mast which would disrupt the antenna’s pattern. The final installed height of our new yagi is a little over 125 ft. Note Andrew’s good work in attaching the feedline to the mast.

432-9WLA Installed SDR - Shack End

432-9WLA Installed SDR – Shack End

With the new yagi installed and hooked up, we made a final check of the end-to-end SWR from the shack. The antenna’s SWR is very good and the 2:1 SWR bandwidth extends from the bottom of the 70cm band to almost 450 Mhz. The new antenna is optimized for weak signal work up through the ATV sub-band and its SWR is below 1.2:1 in this range.

Fred, AB1OC

Satellite Station 4.0 Part 9 – Upgraded Simple Portable Station

Portable Satellite Station

Portable Satellite and Grid Square Activation Station

We were up on Mt. Washington here in New Hampshire this past weekend and we decided to use the SOTA activation as a test for our updated Portable Satellite Station 4.0. It turned out that the station was also a great SOTA and Grid Square Activation station for terrestrial contacts.

An upgraded Portable Satellite Station has been part of our 4.0 Satellite Evolution plan from the start. The goals for the station included:

  • Support for FM and Linear Satellite Contacts
  • Computer Control to handle Doppler Shift
  • A simple, easy to deploy portable antenna system for 2m and 70cm
  • Full-Featured 100w/75w Transceiver with External Preamps for good weak-signal performance
  • Quite, Green Power using Solar Energy and Batteries

Station Components

Our upgraded portable station uses the following components:

Portable Antenna System

Elk Antenna on Tripod

We decided to keep our antenna system simple and quick to deploy. We choose a portable 2m/70cm antenna from Elk and mounted it on a camera tripod. A carpenter’s slope gauge is used as an elevation indicator and our iPhone serves as a compass to point the antenna in the azimuth direction. A weighted bag, Bungie cord, and a tent stake anchor the tripod in the windy conditions on the mountain. A 15 ft length of LMR-240uF coax with N-connectors make the connection between the antenna and the rest of the station.

Station Transceiver and Supporting Gear

Portable Station Transceiver and Preamps

We decided to mount the station Transceiver and supporting gear on a piece of plywood to make it easy to transport and setup. The components from lower-right moving counter-clockwise include:

The preamps are powered and sequenced by the IC-910H through its coax outputs. The 70cm side of the second diplexer is used as a filter to prevent transmissions on 2m uplinks from de-sensitizing 70cm downlink signals.

Portable Station Electronics

The use of the mounting board for all of the components allows the station to deployed quickly and helps to ensure reliable operation.

We used a MacBook Air Laptop running MacDoppler to control the transceiver’s VFOs (via a USB CI-V cable). MacDoppler also provided azimuth and elevation data used to point the antenna during satellite passes.

Portable Power

Portable Solar-Battery Power System

Powering a 100w radio in a way that allows continuous use for a day can be a challenge. It’s important to do this in a way that that does not generate noise so we do not disturb others trying to enjoy the outdoors. We met all of these needs using a combination of solar power and batteries.

Portable Solar Power

The primary source of power comes from a pair of 90w foldable solar panels from PowerFilm. The panels are wired in series and connected to an MPPT Charger which charges a pair of batteries. This approach allows the system to provide usable power when it is cloudy and the voltage output of the solar panels drops.

We use a pair of A123 10 Ah LiPo battery packs to supply high-current capacity when transmitting. The solar-battery combination is capable of maintaining full battery voltage while supporting the continuous operation of our station for a full day.

The MacBook Air Laptop batteries are adequate to operate the station during the available satellite passes. We have a 12V DC to 120 VAC inverter which can power the computer from our solar battery setup if needed.

Station Performance

View from Mt. Washington Summit

Our portable station did very well during its initial test! I had to move the antennas and operate the station by myself on this activation which limited my ability to make a large number of contacts during the limited number of satellite passes that were available. Still, I was able to make 6 solid contacts through AO-91 and AO-85 while on Mt. Washington. I did not have a suitable linear satellite pass to make contacts but I was able to hear the EO-88 beacon with no problems and confirm that the doppler correction system was working well.

The station also put in a great performance visa-vie 2m terrestrial contacts. We made a total of 70 contacts using 2m FM and USB! We received many good signal reports with our longest contacts being some 275 mi from our location. We also worked stations on four other SOTAs this way.

Learnings and Next Steps

Our station exceeded my expectations during our initial test on Mt. Washington – especially in terms of the number of Terrestial Contacts that I was able to make with it. I did notice that the transmit side of the system was quite a bit stronger than the receive side. This is an indication that a better antenna would help.

We changed the antenna polarization to vertical for 2m FM contacts and to horizontal for 2m USB contacts. This helped the receive side performance quite a bit.

I found that a headset was essential for satellite and terrestrial weak-signal operation in USB mode. I was able to use the hand microphone and the radio’s speaker for most of the 2m FM contacts that I made. This gave interested onlookers a chance to experience Amateur Radio.

Satellite operation would have been much easier and more productive with a helper to handle pointing the antenna while we operated. This improvement will need to be coupled with a headset/speaker combination that allows the person pointing the antenna to hear the quality of the downlink while moving the antenna and finding the best polarization.

I am looking forward to doing some grid-square activations using our upgraded portable station. It was a pleasant surprise to find as much interest in Terrestial contacts on the 2m band as we did. The Nashua Area Radio Society does several SOTA activations each year and I am looking forward to using that station for these as well.

Here are links to some additional posts about our Satellite Station 4.0 Projects:

Fred, AB1OC

Amatuer Radio Video How-To – Putting Up A Tower

July 2019 Tech Night – Putting Up A Tower

We recently did a how-to presentation on Putting Up A Tower at a Nashua Area Radio Society Tech Night. The video from this presentation can be viewed above.

Putting Up A Tower Video – Topics Covered

We covered a variety of information related to planning, building and integrating Guyed and House-Bracketed towers. You can view the accompanying presentation materials here.

The Nashua Area Radio Society produces similar how-to training materials on almost a monthly basis and we make these materials available to our Members an Internet Subscribers (folks that live too far from our location to be regular members) for a small cost which supports our new Ham development programs and covers the production and storage costs associated with the video material. Here’s a list of the training topics that we’ve produced to date:

2019 Tech Nights

  • Fox Hunting: Radio Direction Finding for Beginners including a Tape Measure Yagi Build by Jamey Finchum, AC1DC
  • Surface Mount Technology by Hamilton Stewart, K1HMS
  • RF Design with Smith Charts, Building a First HF Station, and Begining with CW – Hamilton Stewart, K1HMS; Anthony Rizzolo, KC1DXL; and Jerry Doty, K1OKD
  • All About Field Day 2019 by our Field Day Planning Team
  • Putting up a Tower by Fred Kemmerer, AB1OC

2018 Tech Nights

  • Operating Your Station Remotely by Fred Kemmerer, AB1OC
  • Transceiver Frequency Measurement and Calibration by George Allison, K1IG.
  • DMR Radios and Programming by Bill Barber, NE1B
  • WSJT-X: FT8, WSPR, MSK144 and More by Fred Kemmerer, AB1OC
  • Getting Started with Raspberry Pi Computers by Anita Kemmerer, AB1QB, Jamey Finchum, AC1DC,  Brian McCaffrey, W1BP, Fred Kemmerer, AB1OC, and Craig Bailey, N1SFT
  • All About Field Day 2018 by our Field Day Planning Team
  • Portable Operating Gear – demonstrations by Nashua Area Radio Society Members
  • K1EL Kits by Steve Elliott, K1EL
  • Antenna Modeling I by Scott Andersen, NE1RD.
  • Building and Operating a Mobile HF Station by Fred Kemmerer, AB1OC

2017 Tech Nights

  • High-Altitude Balloons: Amateur Radio at the Edge of Space and was presented by our HAB Team.
  • Getting On The Air 2.0 by Fred Kemmerer, AB1OC, and B. Scott Andersen, NE1RD
  • All About n1fd.org – Getting the most from our Website by Fred Kemmerer, AB1OC.
  • Digital Modes: RTTY, PSK, and WSJT-X by Mike Struzik AB1YKAnita Kemmerer AB1QB, and Fred Kemmerer, AB1OC
  • Bonding and Grounding by Jeff Millar, WA1HCO and Fred Kemmerer, AB1OC.
  • All About Field Day 2017  by Dave Merchant, K1DLM, and our Field Day Planning Team.
  • Building and Operating a Satellite Ground Station by Burns Fisher, W2BFJ and Fred Kemmerer, AB1OC.
  • DXing and QSLing by Anita Kemmerer, AB1QB; Bill Barber, NE1B; Fred Kemmerer, AB1OC; and Dick Powell, WK1J.
  • Weak Signal VHF and UHF Stations by Jeff Millar, WA1HCO and Bill Barber, NE1B.
  • Getting the Most from your HF Transceiver and More by Fred Kemmerer, AB1OC and Dave Michaels, N1RF.

2016 Tech Nights

  • Popular Loggers – Ham Radio Deluxe and DXLab Suite by Dave Merchant, K1DLM and Fred Kemmerer, AB1OC.
  • Low-Band Antennas by Dennis Marandos, K1LGQ; Hamilton Stewart, K1HMS; Brian McCaffrey, W1BP; and Fred Kemmerer, AB1OC.
  • RF Simulation and Matching by Jeff Millar, WA1HCO
  • Directional Antennas by Fred Kemmerer, AB1OC; Dave Michaels, N1RF; Brian Smigielski, AB1ZO; and Greg Fuller, W1TEN
  • All About Field Day 2016  by our Field Day Planning Team.
  • Surface Mount Soldering and Desoldering, a Hands-On Presentation by Jeff Millar, WA1HCO
  • Building Your First Station and Getting On The Air by Fred Kemmerer, AB1OC, and Dave Michaels N1RF
  • Software Defined Radios by Fred Kemmerer, AB1OC and Skip Youngberg, K1NKR
  • Advanced Repeaters (DMR, EchoLink, DMR, and D-STAR) by Anita Kemmerer; AB1QB, Fred Kemmerer, AB1OC; and Bill Barber, NE1B
  • Antenna Modeling with EZNEC by Fred Kemmerer, AB1OC

You can gain on-going access to the full library of Amateur Radio Training and How-To materials by supporting our work to bring new people and young people into the Amateur Radio Service as a Nashua Area Radio Society Internet Subscriber. You can learn more about how to become an Internet Subscriber here.

Fred, AB1OC

Field Day Satellites, VHF+ and Fox Hunting

We will have lots of great activities for folks who are interested in operating on the VHF and above bands at Field Day 2019. Here are some of the activities that we’ll be doing:

  • Satellites Contacts using a Portable Computer Controlled Satellite Stations
  • Weak Signal SSB, CW, and FT8 Contacts on 6m, 2m, and 70cm
  • Fox Hunting using Radio Direction Finding (RDF) to find hidden 2m Radio Transmitters
  • Satellite Station, VHF+ Station, and Fox Hunting Training

Source: Field Day Satellites, VHF, and Fox Hunting – Field Day 2019

The Nashua Area Radio Society always brings something new to each Field Day that we do. In addition to our Computer Controlled Satellite Station, we will be adding a state of the art Weak Signal Antenna System and Station to our Field Day 2019 lineup. Our VHF Station will use a dedicated 40 ft Tower with Tower Mounted Preamps and low-loss feedlines. You can see what is going on at Field Day 2019 on 6m and above via the preceding link.

Fred, AB1OC

Satellite Station 4.0 Part 4 – Tower Camera and J Mode Desensitization Filter

IP Camera View of New Tower

IP Camera View of New Tower

It is winter here in New England and it is not the best time of year to work outdoors. I have been able to complete a few finishing touches on our new Satellite and 6m Tower.

Installed IP Camera

Installed IP Camera

The first enhancement is the addition of an SV3C IP Camera. The camera allows us to see what is going on with our antennas. The camera has IR illumination so we can see our antennas when operating at night as well. The camera will also be useful for demonstrations when we operate our satellite station remotely in the future. This camera can use Power Over Ethernet (PoE) for power and is compatible with most popular security and webcasting software.

The video above is from our IP Camera while our antennas are tracking AO-7 during a high-elevation pass.

The second enhancement relates to VU Mode (or J Mode) satellites such as SO-50 and FO-29 which use a 2 m uplink and a 70 cm downlink. Satellite ground stations are prone to problems with 70cm downlink receiver desensitization when transmitting on a 2m uplink. The symptom of this problem is difficulty in hearing your own transmissions in your downlink receiver while being able to here other operators in the downlink just fine. Our antennas are separated enough here that we have only minor problems with J Mode desensitization at our station. Fortunately, this is not a difficult problem to take care of.

Comet CF-4160N Duplexer

Comet CF-4160N Duplexer

Installation of a good quality duplexer in the 70 cm path between the antenna and electronics such as our 70 cm preamp provides about 60 dB of additional isolation when operating in J Mode. The Comet CF-4160 Duplexer is a good choice for this application.

J Mode FIlter Installed In Preamp Box

Duplexer J Mode FIlter Installed In Preamp Box

We added one to the preamp box on our tower to create a J Mode desensitization filter. The duplexer is mounted on the left side of the 70 cm preamplifier which is on the right side in the image above. The 70 cm output of the duplexer connects to the feedline from our 70 cm antenna and the common output goes to the input of our 70 cm preamp. We also added a connector cap to the unused 2 m port on the duplexer to protect it from moisture. You can read more about this approach to J Mode desensitization filtering here.

The next stage of our project will be to add hardlines to our new tower and install a second entry to our shack near our new tower to bring our feedlines and control cables permanently into our shack. These projects will have to wait until spring. For now, we are enjoying operating our new antennas from a temporary station set up in our house. We also have a new IC-9700 Transceiver on the way and we should have it installed sometime during the next couple of months.

You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC

Raspberry Pi Satellite Tracker Interface How To

GHTracker Running On A Raspberry Pi 3

Sat Tracker – GH Tracker Running On A Raspberry Pi 3 B+

I have received several requests to share the image and construction details for the Raspberry Pi Satellite Tracker Interface that we use with MacDoppler as part of the Satellite Stations here. You can read more about the motivation for this project and its initial design and testing here.

This article explains how to put a Sat Tracker together.

The information and software described here are provided on an “as is” basis without support, warranty, or any assumption of liability related to assembly or use. You may use information and software image here only at your own risk and doing so releases the author and Green Heron Engineering from any liability for damages either direct or indirect which might occur in connection with using this material. No warranty or liability either explicit or implicit is provided by either AB1OC or Green Heron Engineering.

Now that we have that out-of-the-way, here are the components that you need to build your own Sat Tracker:

The Sat Tracker image includes a display driver for the specific touch display listed above and will most likely NOT WORK with any other touch display. You will also need a Green Heron RT-21 Az/El or a pair of Green Heron RT-21 single rotator controllers from Green Heron Engineering that are properly configured for your rotators.

If you have not worked with the Raspberry Pi before, it’s a good idea to begin by installing NOOBS on your SD card and getting your Raspberry Pi to boot with a USB Keyboard, USB Mouse, and an HDMI display attached. This will give you a chance to get familiar with formatting and loading your SD card with the Raspbian build of the Debian OS for the Raspberry Pi. I’d encourage you to boot up the OS and play with it some to get familiar with the OS environment before building your Sat Tracker.

Etcher Writing Raspberry Pi SD Card Image

Etcher Writing Raspberry Pi SD Card Image

The first step in building your Sat Tracker is to put together the hardware and write the image to your SD Card. Use the enclosed instructions or search the web to find information on how to do each of these steps:

  1. Install the Heat Sinks on the Raspberry Pi 3 B+ Motherboard. Make sure your chipset heat sink will clear the back of the case. If it won’t, it’s fine to just install the CPU Heatsink.
  2. Assemble your case to the point where it is built up to support the touch display
  3. Carefully install your touch display on the Raspberry Pi Motherboard
  4. Install the remaining pieces of your case including the nylon screws and nuts which hold the case parts together
  5. Download the SD Card image from the link below, unzip it, and load the image onto your SD card using Etcher
  6. Install your SD card in the slot on your Raspberry Pi Motherboard
  7. Connect your Raspberry Pi to the outside world as follows:
    • Connect Two USB cables – one end to the Elevation and Azimuth ports on your Green Heron Engineering RT-21 Controller(s) and the other ends to two of the USB connections on the Raspberry Pi
    • Connect a wired Ethernet Cable to your Raspberry Pi via a common Ethernet Hub or Switch with a PC or Mac that has VNC Viewer Installed. You will need a DHCP server running on the same network to supply your Raspberry Pi with an IP address when it boots. Your router most likely provides a DHCP function.
    • Connect your USB power supply to the Raspberry Pi Motherboard and power it up

Your Sat Tracker should boot up to the desktop with GH Tracker V1.24 running. The touch display works fine for using GH Tracker but its a bit small for configuring things. To make the configuration steps easier, the image comes up running VNC Server. I like to use VNC Viewer on my PC to connect to the Sat Tracker using VNC to perform the steps that follow. Note that both the Raspberry Pi and your PC must be on the same sub-network for the VNC connection to work. I’ve also included the following commands in the Sat Tracker image which can be run from the Raspberry Pi terminal window to make the configuration process easier:

$ setdisp hdmi # Disables the TFT display & uses the HDMI interface
$ setdisp tft  # Disables the HDMI interface & uses the TFT display
$ reboot       # Reboots the Raspberry Pi causing
               # the latest display command to take effect

If you select the HDMI interface, you will find that VNC Viewer produces a larger window enabling you to perform the following configuration steps:

  1. First, you need to determine the IP address of your Sat Tracker. This can be done via your DHCP server or by touching the network icon (up and down arrows) at the top of the display on the Sat Tracker.
  2. Use VNC Viewer on your PC or Mac to connect to the IP address of your Raspberry Pi. The default password is “raspberry“.
  3. Once you are connected, open a terminal dialog on the Sat Tracker, set your display to hdmi mode via the command shown above, and reboot your Sat Tracker.
  4. Reconnect VNC Viewer to your Sat Tracker and click on the Raspberry button (Start Menu Button) at the top left of the screen, select Preferences, and run Raspberry Pi Configuration. Select Expand Filesystem from the System Tab. This will expand the filesystem to use all of the available space on your SD Card. You can also change the system name of your Sat Tracker and your login password if you wish. When you are done making these changes, reboot your Sat Tracker.
  5. Reconnect to your Sat Tracker via VNC Viewer and select Setup -> Rotator Configuration from the menu in the GH Tracker App. Select the TTY devices (i.e. COM Ports) associated with the Azimuth and Elevation connections to your RT-21 Controller(s) via the two dropdown boxes. You can also configure the operational parameters for GH Tracker at this time. The ones that I use with our Alfa-Spid Az/El Rotators are shown below.

    GH Tracker Rotator Configuration

    GH Tracker Rotator Configuration

  6. Configure your Green Heron Engineering RT-21 Controllers to work with your rotator(s). The settings below are the ones that we use with the RT-21 Az/El controller and Alfa-Spid Az/El Rotators that we have here.

    GHE RT-21 Az/El Controller Settings for Alfa-Spid Rotator

    SettingAzimuthElevationNotes
    Park Heading0 degrees90 degreesSet via MacDoppler. Minimize wind loading and coupling to antennas below. Also enables water drainage from cross-boom tubes.
    Offset180 degrees0 degreesAzimuth dead spot is South. Elevation headings are from 0 to 180 degrees.
    Delays6 sec6 secMinimize relay operation during computer tracking
    Min Speed23Creates smooth start and stop for large array
    Max Speed1010Makes large movements relatively quick
    CCW Limit180 degrees355 degreesCCW and CW limits ensures predictable Azimuth heading for range around 180 degrees. Elevation limits permit 0 to 180 degree operation. Elevation limits shown can only be set via GHE configuration app.
    CW Limit179 degrees180 degrees
    OptionSPIDSPIDAlfa-Spid Az/El Rotator
    Divide Hi360360Rotator has 1 degree pointing accuracy
    Divide Lo360360
    Knob Time4040Default setting
    ModeNORMALNORMALDefault setting
    Ramp66Creates smooth start and stop for large array
    Bright22Easy to read in shack
  7. Configure the source of tracking data to be MacDoppler (UDP) from the GH Tracker Source Menu. We use UDP Broadcasts with MacDoppler running on the same Mac with VNC Viewer to run our rotator. Finally, press the Press to start tracking button on GH Tracker and run MacDoppler with UDP Broadcast on and Rotators Enabled to start tracking.

    MacDoppler Tracking AO-91

    MacDoppler Tracking AO-91

  8. Once you are satisfied with the operation of your Sat Tracker, use VNC Viewer to access the terminal window on your Sat Tracker one last time, set your display to TFT, and reboot.

The most common problems that you’ll run into are communications between your Sat Tracker and your Green Heron Engineering RT-21 Controller(s). If the Azimuth and Elevation numbers are reversed in GH Tracker, simply switch the TTY devices via the Setup Menu in GH Tracker. Also, note that it’s important to have your RT-21 Controller(s) on and full initialized BEFORE booting up your Sat Tracker.

Most communications problems can be resolved by initializing your tracking system via the following steps in order:

  1. Start with your RT-21 Controller(s) and you Sat Tracker powered down. Also, shutdown MacDoppler on your Mac.
  2. Power up your RT-21 Controller(s) and let the initializations fully complete.
  3. Power up your Sat Tracker and let it fully come up before enabling tracking in GH Tracker.
  4. Finally, startup MacDoppler, make sure it is configured to use UDP Broadcasts for Rotator Control and make sure that Rotators Enabled is checked.

The VNC Server on the Sat Tracker will sometimes fail to initialize on boot. If this happens, just reboot your Sat Tracker and the VNC Server should initialize and enable VNC access.

I hope you have fun building and using your own Sat Tracker.

Fred, AB1OC

First Winter Field Day For The Nashua Area Radio Society

AB1OC Operating at Winter Field Day

AB1OC Operating at Winter Field Day

Source: Our First Winter Field Day – The Nashua Area Radio Society

The Nashua Area Radio Society participated in Winter Field Day for the first time this past weekend. We put up a 40 ft tower and we were QRV on all allowed bands from 160m through 2m and 70cm. Our station was a four transmitter one and we produced a great score during the 24-hour operating period. Winter Field Day presents some unique challenges that we did not encounter during Summer Field Day.

We put together a station for 160m for the first time as well as some other new things. You can read all about our approach to a station and operating for Winter Field Day via the link above.

Fred, AB1OC

160m Portable Antenna System for Field Day

160m Field Day Station Diagram

160m Field Day Station Diagram

The Nashua Area Radio Society tries to do something new each time we engage in an Emcom or other major operation. We decided to try Winter Field Day for the first time this year and we made one of our new elements a capable portable station for 160m.

It’s almost impossible to field an effective 160m station with only a Transmit antenna. Transmit antennas typically are too noisy for effective operation on the low bands. We decided to try a Beverage On The Ground antenna for the receive side of our 160m station. This proved to be a great choice.

Icom IC-7300 Transceiver

Icom IC-7300 Transceiver

We’ve been using the Icom IC-7300 Transceiver almost exclusively for our Field Day stations for the last several years. Many of our members have this rig and its performance and excellent ergonomics make it a great choice. The problem was that we needed a receive antenna input to make the IC-7300 work with our 160m station plans.

INRAD Rx Input Mod for IC-7300

INRAD Rx Input Mod for IC-7300

Fortunately, INRAD came to the rescue with a simple mod for the IC-7300 to add a separate Rx antenna input to the rig.

INRAD Rx Antenna Mod Installation

INRAD Rx Antenna Mod Installation

This mod is simple and is super easy to install. It took me about 30 minutes to do the mod and it worked great. Removed the jumper and you have a separate Rx antenna input. Put the jumper back and the radio performs as stock.

KD9SV Variable Gain Preamp

KD9SV Variable Gain Preamp

Rx antennas typically benefit from the inclusion of a low-noise preamplifier to boost the relatively weak signals from the antennas. We also want a bandpass filter to protect our 160m radio from overload and potential damage which might eliminate from the other transmitters in our Winter Field Day setup. The KD9SV Variable Gain Pre-Amp filled the bill nicely.

KD9SV Front End Saver

KD9SV Front End Saver

We also added a KD9SV Front-End Saver to ground the input to the preamplifier/radio combination when the IC-7300 goes into transmit to further protect the electronics from overload or damage when transmitting on 160m.

KD9SV RBOG Antenna Diagram

KD9SV RBOG Antenna Diagram

We used KD9SV Reversible Beverage On The Ground (RBOG) Transformers to build our receive antenna. The length of the beverage wire is critical in an RBOG setup as an RBOG antenna is a resonant antenna. We used the recommended 180 ft of dual conductor RBOG Antenna Wire to create an antenna for 160m.

RBOG Antenna Kit

RBOG Antenna Kit

An RBOG Antenna such as our must be well grounded at each end. This was accomplished with a pair of 4 ft ground rods and three 50 ft long radials at each end in a crows-foot configuration. All of the need components for the antenna including interconnect and power cables, ground straps, and the electronics were package in a case to keep everything together.

RBOG Antenna Installed In The Field

RBOG Antenna Installed In The Field

The photo above shows one end of the RBOG antenna installed in the Field. You can see both the radials and the feed line transformer attached to one of the ground rods. Our antenna was fed with 300 ft of 75-ohm flooded coax terminated with F connectors. The direction of the antenna can be easily reversed by interchanging the feed line and the 75-ohm terminator at this end of the antenna.

Station Test at our Winter Field Day

Station Test at our Winter Field Day

We decided to set up and test the receive side of 160m station at our Winter Field Day site in advance to work out any installation issues and to gauge the system’s potential performance. Unfortunately, we ended up doing the test in the middle of the day when 160m was basically dead. We also tested the antenna on the AM broadcast band which is just below 160m and we heard 2-3 AM station on every AM frequency in the middle of the day! This was a very good sign of what was to come…

Balun Designs Low-Band Optimized Balun

Balun Designs Low-Band Optimized Balun

We built a 160m dipole for the transmit side of our 160m Portable Station. The heart of this antenna was a Balun Designs Balun optimized for operation on the low-bands. Tuning of the antenna for best operation on the 160m band would have to wait until we had adequate space to set it up at our Winter Field Day site.

160m Transmit Antenna at Winter Field Day

160m Transmit Antenna at Winter Field Day

Setting up our 160m Transmit Antenna was the first order business for the Wire Antenna Team at Winter Field Day. We put up a 50 ft guyed push-up mast used a pull-rope to hoist the 160m Tx Antenna’s Balun to about 48 ft. We used an air cannon to shoot ropes through two tall trees at the ends of the antenna and we were able to get it close to flat-topped.

160m Tx Dipole SWR

160m Tx Dipole SWR

After a little bit of careful tuning, we ended up very pleased with the end result. We had over 60 kHz of usable Tx bandwidth at the bottom of the 160m band. We used the antenna as high as 1.838 MHz during Winter Field Day and it performed great.

So how did the combination perform for us? Well, we made a total of 133 CW contacts on the 160m band during the 24-hour Winter Field Day period with the longest one being to Missoula, MT – a 2,100 mi contact from here in New Hampshire. This is not bad for 100W and portable antennas on Top Band!

Fred, AB1OC

Satellite Station 4.0 Part 3 – Antenna Integration and Testing

Satellite Antennas Off The Tower

Satellite Antennas Off The Tower

Sometimes we learn from problems and mistakes. We all go through this from time to time. It is part of the learning aspect of Amateur Radio. My most recent experience came while integrating our new tower-based satellite antenna system. After the antennas were up, initial testing revealed the following problems:

After an initial attempt to correct these problems with the antennas on the tower, we decided to take them down again to resolve the problems. The removal was enabled, in part, via rental of a 50 ft boom lift.

The lift made it relatively easy to remove the Satellite Antenna Assembly from the tower. We placed it on the Glen Martin Roof Tower stand that was built for the Portable Satellite Station 3.0. Once down, the Satellite Antenna System was completely disassembled and a replacement Alfa-Spid Az/El rotator was installed.

Cross Boom Truss System

Cross Boom Truss System

The photo above shows the reassembled cross boom and associated truss supports. Note the tilt in the truss tube on the left side. This allows the antennas to be flipped over 180 degrees without the truss contacting the mast.

Reinforcement Bushing

Reinforcement Bushing

As mentioned in the previous article, polycarbonate reinforcement bushings are installed in the fiberglass parts to prevent the clamps from crushing the tubes. The photo above shows one of the bushings installed at the end of one of the truss tubes.

Bushing Pin

Bushing Pin

The bushings are held in place with small machine screws. This ensures that they remain in the correct locations inside the fiberglass tubes.

Thorough Ground Test

Thorough Ground Test

With the Satellite Antenna Array back together and aligned, we took a few days to operate the system on the ground. This allowed me to adequately test everything to ensure that the system was working correctly.

Tower Integration Using Lift

Tower Integration Using A 50 ft Boom Lift

With the testing complete, the antennas went back up on the tower, and the integration and testing work resumed. Having the boom lift available made the remaining integration work much easier.

Control Cable Interconnect Boxes

Control Cable Interconnect Boxes On The Tower

There are quite a few control cables associated with the equipment on our new tower including:

A combination of junction boxes near the top of the tower and at the base make connecting and testing of the control circuits easier and more reliable. Tower mounted junction boxes were used to terminate the control cables near the rotators and antennas.

Control Cable Junction Box at Base of Tower

Control Cable Junction Box at Base of Tower

A combination of heavy-duty and standard 8 conductor control cable from DX Engineering was used for the cable runs from the top of the tower to a second junction box at the tower base.

Control Cable Junction Box Internals

Control Cable Junction Box Internals

The junction box at the base creates a single interconnect and testing point for all of the control cables. We’ve used this approach on both of our towers, and it makes things very easy when troubleshooting problems or making upgrades. Control cables for all of the tower systems were run to the temporary station set up in our house and terminated with connectors that are compatible with our Portable Satellite Station 3.0 system.

Satellite Preamp System

Satellite Preamp System

We built a tower mounted Preamplifier System for use with the egg beater satellite antennas on our 100 ft tower a while back. The Preamp System is being reused on our new tower. A set of Advanced Receiver Research 2m and 70cm preamplifiers are mounted in a NEMA enclosure to protect them from the weather and to make connecting the associated control cables easier.

Tower Mounted Preamp System

Tower Mounted Preamp System

The Preamp System was mounted near the top of the new tower and the feedlines from the 2m and 70 cm Satellite Antennas were connected to it. LMR-400uF coax is run from the Preamp System as well as from the Directive Systems DSE2324LYRM 23 cm Satellite Yagi and the M2 6M7JHVHD 6 m Yagi on our new tower to the station in our house to complete the feedlines. These LMR-400uF feedlines will be replaced with 7/8″ hardline coax to our shack in the spring when warmer weather makes working with the hardlines easier.

Temporary Station Setup

Temporary Station Setup

With all of the tower integration work done, we set up the station in our house for testing. This is the same station that is our Portable Satellite Station 3.0 with two additions:

Both of these additions will become part of the final Satellite Station 4.0 when it is moved to a permanent home in our shack.

Rotator Controls

Rotator Controls

The rotator setup on the new tower provides two separate azimuth rotators. The lower one above turns both the 6 m Yagi and the Satellite Antenna Array together. The upper box controls the Alfa-Spid Az/El rotator for the satellite antennas. Using two separate rotators and controllers will allow us to integrate the 6m Yagi into the microHam system in our station and will allow the MacDoopler Satellite Tracking Software running on the iMac to control the Satellite Antennas separately. When we are using the 6 m Yagi, the Satellite Antennas will be parked pointing up to minimize any coupling with the 6 m Yagi. When we are using the Satellite Antennas, the rotator that turns the mast will be set to 0 degrees to ensure accurate azimuth pointing of the Satellite Antennas by the Alfa-Spid Az/El rotator.

PSK Reporter View using New 6 m Yagi

PSK Reporter View using the M2 6M7JHVHD 6 m Yagi

So how does it all perform? With WSJT-X setup on our iMac, I was able to do some testing with the new 6 m Yagi using FT8. The IC-9100 Transceiver that we are using can produce 100W with WSJT-X. The 6m band is usually not very open here in New England in January so I was quite pleased with the results. As you can see from the PSKReporter snapshot above, the new antenna got out quite well on 6 m using 100W. I made several contacts during this opening including one with W5LDA in Oklahoma – a 1,400 mi contact. The 6M7JHVHD is a much quieter antenna on the receive side which helps to make more difficult contacts on 6 m.

MacDoppler Tracking AO-91

MacDoppler Tracking AO-91

We’ve made a little over 100 satellite contacts using the new system so far. With the satellite antennas at 45 feet, it’s much easier to make low-angle contacts and we can often continue QSOs down to elevation angles of 5 degrees or less. I have not had much of a chance to test 23 cm operation with AO-92 but I have heard my signal solidly in AO-92’s downlink using the L-band uplink on the new tower. This is a good sign as our IC-9100 has only 10W out on 23 cm and we are using almost 100 ft of LMR-400uF coax to feed our 23 cm antenna.

Satellite Grids Worked and Confirmed

Satellite Grids Worked and Confirmed

I’ve managed to work 10 new grid squares via satellites using the new antenna system including DX contacts with satellite operators in France, Germany, the United Kingdom, Italy, Spain, and Northern Ireland using AO-07 and FO-29. These were all low-angle passes.

So what did we learn from all of this? Due to concern over possible snow here in New England, I did not take the time to fully ground test the satellite antennas and new rotator before it went up on the tower the first time. My thinking was that the setup was the same as that used on Portable Satellite Station 3.0 for over a year. The problem was the replacement parts and new control cables were not tested previously and both of these created problems that were not discovered until the antennas were at 45 feet. While it would have made increased the risk that the antennas would not have gotten up before the first winter snow storm here, it would have been much better to run the antennas on the ground for a few days as I did the second time. Had I done this, both problems would have appeared and have been easily corrected.

The next step in our project will be to add transverters to our FlexRadio-6700 SDR and integrate the new antennas into our shack. You can find other articles about our Satellite Station 4.0 project here:

Fred, AB1OC