EME Station 2.0 Part 7 – Building Antennas

M2 Antennas 2MXP28 X-Pol Yagi

M2 Antennas 2MXP28 X-Pol Yagi

The next step in our EME project is to assemble the four M2 Antenna Systems 2MXP28 Yagis. These antennas are large, cross-polarized yagis. They feature 28 elements each on 34 1/2 foot booms. The design operates as an independent horizontal and vertical Yagi on a shared boom and each plane has an independent feedpoint.

EME Antenna Array Assembly

EME Antenna Array Assembly on H-Frame

We are building four of these antennas to be mounted on an M2 Antennas 2X2 H-Frame. It is important that the four antennas be identical so they operate properly as an array. This includes things like symmetrical mounting and alignment of each antenna’s vertical and horizontal elements and the associated feed points. We will cover the assembly of the H-frame and Elevation Rotator systems in the next article.

Preparation

NOALOX Assembly Compound and Sharpie Pen

NOALOX Assembly Compound and Sharpie Pen

M2 Antenna Systems instruction manuals are very good and they specify the tools and procedures to properly assemble the associated antennas. A few additional items were helpful in our project. These included:

The assembly steps and procedures are similar for most M2 Antennas 2m and UHF Yagi antennas so I’m going to share some details and a few tricks that we’ve used successfully to build a number of their Yagis. You can see some of these other projects via the following links:

We successfully built all of these antennas using similar components and techniques.

M2XP28 Sorted Parts

M2XP28 Yagi Sorted Parts

The first step in assembling each antenna was to inventory and arrange all of the parts. I also took the time to wipe the boom elements with a solvent soaked cloth to remove dirt and aluminum dust that results from the manufacturing process. This makes assembling the antenna a much cleaner process.

2MXP28 Yagi Dimension Sheet

2MXP28 Yagi Dimension Sheet

M2 supplies detailed dimension sheets and boom layout diagrams with their antennas and we took the time to carefully identify each element and boom component according to the diagrams.

Element Measurement and Marking

Element Measurement and Marking

This step included careful measuring, sorting, and marking each element with its location and polarity (horizontal or vertical). This step makes the somewhat difficult step of getting all of the elements in the correct polarity and orders much easier. The marks allowed me to check and confirm the correct installation of all of the elements on the antenna boom before locking them in place.

Mast Clamp and Boom Truss Attachment Pre-assembly

Mast Clamp and Boom Truss Attachment Pre-assembly

We also pre-assembled things like the Mast Clamp and the Boom Truss Clamp during the parts inventory process.

Boom Assembly

Boom Assembly Details

Boom Assembly Details

The first step in assembling the antenna boom was to arrange all of the boom segments in the correct order and confirm their front/back orientation. This took some time to get right on the first of the four antennas. Each Boom segment was marked with the Sharpie to indicate its location and orientation in the final assembly.

We also installed the T-Brace Clamp to attach the rear of the antenna to the H-Frame’s T-Brace. It’s essential to do this step before assembling the Boom as the clamp cannot be attached once the antenna’s elements are in place. The correct location for the clamp was established via a careful measurement and the location was marked on the boom using the Sharpie.

Assembled Boom

Assembled Boom

The next step was to assemble the boom sections paying careful attention to the markings made earlier. We did not tighten any of the bolts that hold the boom sections together at this stage to allow us to re-clock each boom section for the best alignment of the elements later. A generous coat of NOALOX was used at the joint of the two largest diameter Boom sections to facilitate easier assembly and potential re-clocking later. NOALOX was also used on all bolts to provide anti-seize lubrication.

Once the boom is assembled, a 40-foot tape measure is used to carefully confirm that all of the holes for the elements are in the correct location. The Dimension Sheet is used as a reference to check and confirm that all measurements are correct before installing the Elements. This is also a good time to measure and carefully mark the location of the center of the Mast Clamp on the Boom.

The eye bolts that attach the Boom truss cable are also installed at this time.

Element Installation

Element Installation Details

Element Installation Details

Next came the installation of the elements. We began with the Horizontal reflector and worked towards the front of the antenna. The elements are held in place with insulated buttons and stainless locks. The elements are first installed in the correct location and carefully centered using a steel ruler. Vise-grip pliers are then used to hold the element in its centered position while the M2 supplied tool is used to push the lock on the opposite side of the element. The center is next checked again and if all looks good, the second lock is installed. This process is continued until all of the elements are in place. We pay careful attention to the markings on each element as part of the installation procedure to ensure that all of the elements are in the correct location on the boom.

H-Element Installation Complete - Ready for V-Element Installation

H-Element Installation Complete – Ready for V-Element Installation

Once all of the elements are in place, the antenna is rotated 90 degrees to enable boom adjustments to align the elements. It is common for the boom sections to be misaligned a bit after the initial assembly. A combination of clocking each boom section either a bit one way or the other or sometimes removing the bolts holding two sections together and turning them 180 degrees relative to each other will create a perfect alignment of the elements. Once this is done, all of the bolts that hold the Boom sections together are fully tightened taking care not to distort or crush the Boom tubes.

The same installation process is repeated for all of the vertical elements.

Driven Element Assembly

Feedpoint Assemby

Feedpoint Assembly

The Driven Element feedpoint blocks are installed next. The mounting screw and the Allen screws in the Shorting Bars all receive a light coat of Blue Locktite thread locker prior to installation.

Next, we loosely install the blocks in their correct location on the Boom and then install the Shorting Bars loosely on the Feedpoint Block and Driven Element. Once these parts are in place, the screen that holds the Block to the Boom can be tightened fully, guaranteeing a perfect alignment of all of the parts.

The next step was to accurately set the spacing between the Feedpoint Block and each shorting bar. I used a dial caliper to do this accurately but it can also be done with the careful use of a metal machinist’s or similar ruler.

The final step for each feedpoint was to install the 1/2 wave Coax Balun to the Feedpoint Block. Be careful not to overtighten the coax connectors. Just make them snug and you are set. The supplied cable ties are used to secure the Balun to the boom.

The same steps are repeated for the Vertical Feedpoint. It’s a good idea to install connector dust caps on the Feedpoint Block connectors to keep them clean and dry prior to installation.

H and V Feedpoint Orientation

Vertical and Horizontal Feedpoint Orientation

It is critical that the relative orientation between the Horizontal and Vertical Feedpoint Blocks be the same on all four of the antennas in the array. If this is not the case, the pattern of the array will be upset which will have a major negative effect on the array’s performance.

Mast Clamp and Boom Truss

Mast Clamp Installation

Mast Clamp Installation

The Mast Clamp assembly is installed next using the center mark placed on the Boom earlier. I also marked the backside of the Mast Clamp plate to show its center to make lining things up easy. The clamps should be oriented according to the H-frame mounting diagram (show at the front of this article).

Boom Truss Assembly

Boom Truss Assembly

The final step in the assembly process is the assembly of the Boom Truss. The 2MXP28 Yagi is supplied with a Phillystran cable. The height of the Boom Truss will be set later when the antennas are attached to the H-frame so we just installed both ends of the Phillystran cable to the Eye Hooks installed in the Boom. The connections are made using the supplied Strain Relief Loops and small cable clamps. A drop of oil on each nut helps things go together smoothly.  We had some Phillstran cable end caps so I installed them on the Phillystran cable ends to protect against water ingress. The turnbuckles, remaining clamps/strain reliefs, end caps, and truss clamp assembly were stored in a plastic Ziploc bag and cable-tied to the Boom to be installed later when the antennas are attached to the H-frame.

Final Details…

Completed 2MXP28 Antenna Ready for Installation

Completed 2MXP28 Antenna

It’s a good idea to give everything one last go-over now that the antenna is complete. All bolts and screws are checked for tightness, the Elements are all confirmed to be in the right locations, and the Feedpoint assemblies are given a final check.

Four 2MXP28 Antennas Ready for Installation

Four 2MXP28 Antennas Ready for Installation

Our EME project involves the assembly of four of these antennas with a total of 112 elements! It took me about 3 days to assemble each antenna (working about 3-4 hours each day). We stored the antennas on our deck to make space in our shop as we went. The antennas are well supported using low saw horses and woodblocks so as not the bend the Booms or the Elements.

The next step in our project will be to assemble and test the Elevation Rotator system. You can read more about our EME station project via the links that follow:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC

Tech Night – VHF+ Weak Signal Stations Part 1 (Intro and 6 Meters)

Tech Night - VHF+ Weak Signal Stations Part 1 - Overview and 6 Meters

Tech Night – VHF+ Weak Signal Stations Part 1 – Overview and 6 Meters

We recently did a Tech Night on building and operating VHF+ stations as part of the Nashua Area Radio Society’s educational program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to get started and build their own VHF+ Weak Signal Station.

There is a lot to this topic so we’re going to cover it with two Tech Night presentations. The first one in the series is included here and it provides an Introduction to the VHF+ topic along with details on building and operating a station for the 6 Meter Band.

July 2020 Tech Night Video – VHF+ Weak Signal Stations Part 1 – Introduction and 6 Meters

You can view this Tech Night session via the video above. Here’s a link to the presentation that goes with the video. You can learn more about the Nashua Area Radio Society’s Tech Night program here.

We have built a number of stations and antennas for the VHF+ Bands (6 Meters and above). Here are some links to articles about those projects and our operations on the VHF+ Bands here on our Blog:

Fred, AB1OC

Tech Night July 14 – Building and Operating a VHF+ Station

Completed Antenna Stack On New Tower

6m Yagi and 2m/70cm/23cm Satellite Antennas On A Tower

We will be hosting a Tech Night about Building and Operating a VHF+ Weak-Signal Station tonight, July 14th at 7 pm Eastern Time. The live, interactive video of our tech Night will be shared via a Zoom conference and all of our readers are welcome to join. I plan to cover the following topics during our session this evening:

  • Why do weak-signal work on 6 meters and above?
  • What can you work and what modes are used on these bands
  • How does propagation work at 50 Mhz and above and how can you measure it?
  • How does one operate using SSB, CW, and digital modes on these bands?
  • What equipment is needed and what are some possible ways that you can put together a VHF+ station?
  • Some demonstration of actual contacts

In addition to an overview of how to get on all of the bands above 50 MHz, we will focus on the 6 Meter (Magic) band. The session will include demonstrations of FT8 and Meteor Scatter contacts on 6 m. I will also briefly describe the 6 m station here at AB1OC-AB1QB and show how we use it to make contacts. A second Tech Night will cover stations and weak-signal operating on 2 m and above.

The Zoom information for our Tech Night Session follows. We suggest that you join early so that you have a chance to make sure that your computer, speakers, microphone, and camera are working.

July 14th, 7 pm Eastern – Nashua Area Radio Society Tech Night. Fred, AB1OC Setting up a VHF+ Station. Here’s an opportunity to learn how to add 6 m and above weak-signal modes to your station. Join Our Zoom Meeting

We hope to see many of our readers this evening!

Fred, AB1OC

So Close – A 6m Opening to Japan from New England

A Recent 6m Band Opening Between Japan and the United States (PSK Reporter)

We’ve been having a good 6m Es Season in the Eastern United States this year. One thing that all of us here in New England look for is a chance to work DX contacts on the 6m Band. We’ve been fortunate to have almost daily openings from our region to Europe, Central, and South America. One 6m DX activity that is very rare is the ability to work stations in Japan via the 6m band from stations here in New England.

Recently, we saw one of the best openings between the United States and Japan that we have encountered here in New England. The image above shows contacts being made on the 6m Band via the FT8 Digital Mode between Japan and the United States on June 18th, 2020 in the evening eastern time.

So Close – Japan Opening to New England on 6m (PSK Reporter)

The pattern of 6m Es openings between Japan and the United States, not surprisingly, typically begins with West Coast and Midwest Stations and works eastward. We’ve been seeing these openings progress to include stations in the Southeastern United States recently on a regular basis. We monitor PSK Reporter and we use our station in receive-only mode to monitor the progress of 6m openings to Japan when they occur.

As you can see from the image above, the 6m Japan opening on June 18th progressed tantalizingly close to our QTH here in New Hampshire. This is one of the best openings to Japan into the Northeast region that we have seen to date.

Unfortunately, this particular 6m opening did not quite make it to our location here in New Hampshire. Perhaps we will see another, better opening before the end of this Es Season.

Fred, AB1OC

6m VUCC In A Day – ARRL June VHF Contest

6M VUCC Operating Award

6M VUCC Operating Award

The 6m Band is one of my favorite bands. The combination of its unpredictability and the amazing openings that it can produce certainly makes 6m The Magic Band for me!

Fred’s (AB1QB) First Place Finish in NH – 2013 ARRL June VHF Contest

Fred’s New Hampshire First Place Finish in the ARRL June VHF Contest

I haven’t had the chance to work the ARRL June VHF Contest from our home station for several years. A combination of Nashua Area Radio Society activities and preparations for ARRL Field Day have taken a higher priority. ARRL June VHF is a great contest and I was looking forward to working it this year. A few days before the contest Anita and I were talking about the contest and she suggested that I do a 6m Digital Entry. E-skip has been pretty good on 6m this year and we wanted to sort out how we’d do digital and 6m for our upcoming 2020 Field Day Operation from our home so I decided to take Anita’s advice and focus on 6m Digital for June VHF. I entered the contest in the Low-Power Category.

June VHF Operating Setup

6m VUCC

AB1OC Operating in 2020 June VHF

We built a Remote Operating Gateway that allows our station to be operated both over the Internet and from any room in our home via our Home Network. I decided to set up a 6m Digital Station upstairs in our dining room so I could be with Anita more during the contest. The setup consisted of a laptop PC with an outboard monitor and a Flex Maestro as the client for the Flex 6700 SDR in our shack.

Completed Antenna Stack On New Tower

Completed Antenna Stack on our VHF Tower

We have three antennas for 6m – one on our VHF Tower and two via the SteppIR DB36 yagis with 6m kits on our main tower.

Delta Loop On Tower

SteppIR DB36 Yagis on our Main Tower

The three antennas can be pointed in different directions and selected instantly via the computer. This provided to be an advantage during the contest. I kept one on Europe, one point due West, and the third pointed at the Tip of Florida and the Caribean during the contest.

6m VUCC

Operating Setup – N1MM+ and WSJT-X

Having two monitors (the Laptop and an outboard one) allow me to arrange all of the N1MM+ Logger and WSJT-X windows for efficient operating. The image above shows a snapshot of the screen layout during the contest. N1MM+ has some nice features that integrated with WSJT-X to make it easy to spot new grids (Multipliers) and stations that have not yet been worked. The windows on the very right side allowed me to control antenna switching and monitor power and SWR while operating. I use the PSTRotator application (lower-left center to turn my antennas.

6m Band Conditions

6m VUCC

6m PSK Reporter On Sunday Evening

Band conditions on 6m were amazing from here in New England almost the entire contest period! The band was open right at the start of the contest on Saturday and remained open to 11 pm local time on Saturday evening. I was up early on Sunday and was working folks in the Northeastern Region right from the start. After being open all day on Sunday, the band shut down around 5 pm local time and I was afraid that the fun on 6m might be over. I ate some dinner and took a 45-minute nap and got back to my station at around 6:30 pm. About 15 minutes after I resumed, 6m opened again to most of the United States and I was able to work DM and DN grid squares in the Western States! The band stayed open right until the end of the contest at 11 pm local time.

What About the VUCC…

6m VUCC

100 Grids Worked on 6m

Conditions on 6m were so good on Saturday that I almost worked a 6m VUCC by 11 pm on Saturday evening when the band closed. I had 93 grids worked on 6m in just 8 hours! The band opened again early on Sunday morning and I worked my 100th grid square before 10 am – working a 6m VUCC in less than 18 hours!

6m VUCC

Final 6m Grids Worked

By the end of the contest, I had worked a total of 162 Grids! They ranged from the West Coast of the US to Western Europe and from Southern Canada to Northern South America.

6m VUCC

6m Grids Worked During 2020 June VHF

The image above shows most of the 6m grids that I worked plotted on a world map (the EU grids are not shown).

6m VUCC

Final Claimed Score

I was able to make a total of 402 unique contacts on 6m by the end of the contest with a final Claimed Score that was a bit over 65K. All of my 6m contacts during the contest were made using a combination of FT8 and FT4 modes on 6m.

New Ones on 6m for AB1OC

6m VUCC

AB1OC Worldwide 6m Grid Map

I was hoping to work some all-time new Grids and June VHF did not disappoint. I worked a total of 11 new Grids and one new DXCC (Dominica) on 6m during the contest. The image above shows my worldwide grid coverage including the new ones worked during June VHF (my grids in Argentina and Uruguay are not shown above). I now have worked 432 grids on 6m and have confirmed 408 of them with 63 DXCC’s worked and 62 confirmed on the Magic Band.

Summing It All Up…

I must say that I had as much fun working 6m during June VHF this year as I have ever had in any contest! The band openings on 6m were really good and I was busy making new contacts for the entire time that I operated. The combination of the 6m Band and the contest certainly made some Magic for me!

Fred, AB1OC

AO-27 Is Back!

AO-27 Satellite

AO-27 Satellite

The AO-27 FM satellite is back on the air! AO-27 is an FM V/U Mode satellite that was launched back in 1993. The satellite’s Amateur Radio payload became inoperative about 7 years ago due to an internal communications failure. Thanks to some great work by Micheal, N3UC who was one of AO-27’s original designers, the satellite is back on the air on a limited-time basis (4 minutes, twice per orbit over the mid-latitudes).

I was able to make my first contact through AO-27 this morning. The contact was with AI9IN in Indiana, USA. I’m looking forward to making more contacts using this satellite in the near future. Here are the current frequencies for the uplink and downlink (no PL tone is required):

  • Uplink – 145.850 MHz FM
  • Downlink – 436.7975 MHz FM

It’s great to have yet another FM satellite that we can all use. I hope that other satellite operators will give AO-27 a try.

Fred, AB1OC

Getting Started With Amateur Satellites (and Progressing to Linear Birds)

Get Started with Amateur Satellites

Get Started with Amateur Satellites

We get quite a few requests from folks to explain how to get started with Amateur Radio Satellites. Requests for information on how to build a computer-controlled ground station for Linear Satellites are also pretty common. I recently got such a request from our CWA class so I decided to put together a session on this topic.

We covered a number of topics and demonstrations during the session including:

  • How to put together a simple station and work FM EasySats with HTs and a handheld antenna
  • A recorded demonstration of some contacts using FM EasySats
  • How-to build a computer-controlled station and work Linear Transponder Satellites
  • Fixed and Portable Satellite Station Antenna options
  • A recorded demonstration of some contacts using Linear Satellites
  • How-to work digital (APRS digipeater) contacts
  • How-to receive SSTV Transmissions from the ISS

About 30 folks attended this session and there was some good Q&A throughout.

Getting Started With Amateur Satellites

The presentation was recorded and can be viewed above. Here’s a link to the associated Powerpoint Presentation.

There are lots of articles about building and operating Amateur Satellite Stations here on our blog. The following are links to several articles and series on this topic:

I hope that you find this information useful for your Amateur Satellite projects!

Fred, AB1OC

Perspectives on a 6m DX Opening

6m DX Opening to Europe - PSK Reporter

6m DX Opening to Europe – PSKReporter

I’ve had a chance to operate on the 6m Band this past week. We are approaching the prime time for the summer Es (E-Skip) season here in the Northeastern United States. As a result, I wanted to see how propagation on the 6m band might be unfolding during this spring Es season. I was fortunate to catch a typical limited DX opening on the 6m band between our location here in New England and Europe. I thought that it might be helpful for those who are relatively new to the 6m band to see what this was like.

DX Opening Begins - JTDX Software View

A 6m DX Band Opening Begins – JTDX Software View

I spent some time on and off yesterday calling CQ and monitoring the 6m band using the JTDX software and FT8 mode. FT8 now dominates most of the activity on the 6m band. This is a result of a combination of FT8’s weak-signal performance and available reverse beacon tools such as PSKReporter. As you can see from the JTDX screenshot above, the 6m band was basically only open to the United States here until about 16:58z. At that point, I weakly decoded CT1ILT. This station faded almost immediately and I was unable to make a contact.

Approximately 4 minutes later, the 6m band opened solidly to Spain and France and quite a few stations in this area of Europe appeared with relatively strong signals.

6m DX Opening to Europe - Spotlight Area Propagation

6m DX Opening to Europe – Spotlight Area Propagation (PSKReporter)

As you can see from the PSKReporter screenshot above (taken near the end of the band opening), the probation on 6m was quite strong but limited to a very specific area and heading in Europe. This is typical of limited double-hop Es propagation. We most likely had two Es clouds aligning in such a way that a narrow path of propagation had been created on the 6m band.

A 6m DX Band Opening In Full Swing - JTDX Software View

A 6m DX Band Opening In Full Swing – JTDX Software View

The view above shows the 6m band opening in full-swing. I was hearing 5-6 strong stations from France, Spain, and Italy almost immediately. These stations are all on a relatively narrow range of headings center at about 65 degrees from my QTH. I am scrambling to work the stations that represented new grid squares for me. I am using JTAlert as a bridge to my logger (DXLab Suite) and it is telling me that 2-3 of the station in the mix are in grid square that I have not yet worked on the 6m band.

A 6m DX Band Opening Comes to an End - JTDX Software View

A 6m DX Band Opening Comes to an End – JTDX Software View

Like all good things, the 6m DX opening had to come to an end. As you can see above, the 6m band closed as rapidly as it opened, leaving me calling CQ with no takers to work in Europe.

Contacts Made During the 6m DX Opening

Contacts Made During the 6m DX Opening

The total duration of this opening was about 20 minutes. The contacts that I made during this period are shown above. During the brief opening, I was able to make a total of 11 contacts with a limited set of grid squares in Europe. Most of the signals were quite strong (see the Sent and Rcvd columns in my log above). During the opening, I worked 5 new grid squares that were centered around the border between France and Spain.

AB1OC 6m Grids Worked and Confirmed

AB1OC 6m Grids Worked and Confirmed

By this morning, three of the five new grids that I worked had already confirmed on LoTW. Just for fun, I plotted my 6m grid progress on the Gridmapper website. I keep a copy of the Gridmapper view of my log by my operating area as a reference that I use in conjunction with PSK Reporter to help me identify 6m band openings that might provide opportunities to work new grids.

I hope that this article gives you some idea of the nature of 6m DX openings. The opening described here is pretty typical in that:

  • The band open (and closed) suddenly without much warning
  • The propagation was very good with many strong signals being decoded and worked at once
  • The opening was of short duration lasting only about 20 minutes
  • The band closed as rapidly as it opened
Monitoring the 6m Band at AB1OC

Monitoring the 6m Band at AB1OC

In order to work 6m DX, this experience emphasizes the need to monitor the 6m band for DX openings on a regular basis. This is most easily done using PSKReporter. The pattern of DX openings on 6m to Europe from here in New England is such that EU DX openings typically begin south of us and progress northward. I use our Remote Operating Gateway, a Flex-6700 SDR based setup, to monitor the 6m band for DX openings while I work here in my office. You can see the 6m FT8 setup here in my office running in the monitor-mode above.

FlexRadio Maestro Console

FlexRadio Maestro Console

I use the Maestro here in my office as my SDR client.

I hope that this information has been useful to our readers. As you can see from this example, the 6m Band is called the Magic Band for good reason. It is very exciting to be able to catch and work a good DX opening on 6m. The FT8 mode has both increased the level of activity on the 6m band and made 6m available to many stations with simple antennas and 100W transceivers. You can learn more about how to get started with FT8 on 6m here.

As I sit here writing this, the 6m band just opened to Austria and Hungry! Have to go work some DX on the 6m band…

Fred, AB1OC

Tech Night – Getting Started In EME Communications

Tech Night – Getting Started in EME (Click to View The Presentation)

We recently did a Tech Night Program as part of the Nashua Area Radio Society’s educational program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to get started in EME or Moonbounce Communications.

April 2020 Tech Night Video – Getting Started in EME Communications

You can see the presentation via the video above. Here’s a link to the presentation that goes with the video. You can learn more about the Nashua Area Radio Society’s Tech Night program here.

We are in the process of building a new 2m EME station that will have adaptive polarity. you can read more about that project here.

Fred, AB1OC

EME Station 2.0 Part 6 – Tower Grounding System

Tower Ground System

Tower Ground System

Now that spring is here, we’ve continued work on our EME station project. The most recent project was to build complete the ground system for our new EME tower. The proper way to ground a tower is shown above. Each leg of the tower is connected to an 8′ ground rod via a heavy-gauge ground cable. The cable is attached to the tower leg using stainless steel clamps meant for this purpose. The three ground rods associated with the tower legs are then bonded together using a heavy copper ground cable ring.

Ground Cable CAD Weld

Ground Cable CAD Weld

The ground cables are welded to the top of the ground rods using CAD weld on-shots. This creates a strong connection that will not corrode or fail. It is important that the ground rods be free of dirt, corrosion, oxidation, and burrs before performing the CAD welding. We used a combination of 3-wire and 4-wire one-shot CAD welds to build our ground system and connect it to the bonding system running from out tower to the entry to our shack.

Main Grounding System Bonding

Main Grounding System Bonding

The final step was to connect the bonding run from the tower to the perimeter grounding system around our house. This completed the tower grounding system and enabled us to complete our final permit inspection courtesy of our local building inspector.

Finished Tower Base

Finished Tower Base

With all of this work done and the inspection complete, we added a mulch bed around our new tower to make this area of our lawn easy to maintain.

The next step in our project is to begin building the antennas that will go on our EME tower. You can read more about our EME station project via the links that follow:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC