ARRL Field Day is upon us and I wanted to share some thoughts about the mentoring and learning opportunities that Field Day can provide. Many Clubs and other groups here in New England are planning…
Field Day provides clubs and groups with a great opportunity to engage and mentor new and less experienced hams. I wanted to share some thoughts and ideas on how we can make mentoring a part of our Field Day activities. You can read more about some successful mentoring activities that have worked well as part of Field Day operations that we’ve been involved in via the link above.
I hope to work many of our readers during Field Day 2021!
We are holding an in-person Field Day operation at Keyes Memorial Park in Milford, NH. Here’s some more on our plans for Field Day 2021. We’d like to invite you to join us…
I’d like to invite our friends here on our Blog to visit us during Field Day on Saturday, June 26th, and Sunday, June 27th. We will be at Keyes Memorial Park in Milford, NH.
Testing Our Field Day Satellite Station
We will have a Tower up with a Triband Yagi and we’ll have our computer-controlled portable satellite station at Field Day.
6m LFA Antenna for Field Day
We’ll also have a new LFA Yagi for the 6m Band. We will be a 4A station with a total of 5 Transmitters on the air. Our stations will be equipped for SSB Phone, CW, and FT8/FT4 Digital modes.
We’ll also be doing training sessions on Satellite Operations, FT8 Digital on 6m, and Fox Hunting at 12:30 pm on Saturday, June 26th. If you have an HT, bring it and you can use it to hunt our foxes. We’ll also have HTs available for folks to use for Fox Hunting.
We had some time over the weekend so we ran some Satellite Pass Predictions for Field Day 2021 for our Grid Square which is FN42. As you can see, we are going to have a lot of fun working satellite during Field Day! Field Day rules limit us to a single FM EasySat contact using but we can work as many contacts via Linear Transponder Satellites as we wish
Field Day Satellite Station
We recently set up and tested our Portable Satellite Ground station here at our QTH and it’s working great! It has produced some good DX contacts into Europe from New Hampshire, USA during the past week.
The Nashua Area Radio Society will be using our portable Satellite Station this year at Summer Field Day. A number of members got together recently to assemble and test our Computer-Controlled Portable Satellite Station for Field Day. Here are some pictures of our Field Day Satellite Station Test…
Several members of the Nashua Area Radio Society got together to set up and test our Portable Satellite Station for Field Day 2021. Our station is a computer-controlled one and enables us to work FM and Linear Satellites using phone mode and CW.
You can see how the portable station goes together in the article above. You can learn more about the design and construction of our Portable Sation from the series of articles that begins here. We hope to work some of our readers on the birds during Field Day this year!
We’ve been wanting to try a Loop Fed Array (LFA) Yagi on the 6m Band. The Nashua Area Radio Society’s 2021 Field Day operation presented us with a good opportunity to do this. We choose a lightweight 3-Element LFA Yagi from InnoVAntennas and used a fiberglass mast to get it up 25 ft (about 8 meters).
The LFA Yagi performed very well! You can read more about this antenna’s performance and our upgraded portable station via the link above.
We get quite a few requests from folks to explain how to get started with Amateur Radio Satellites. Requests for information on how to build a computer-controlled ground station for Linear Satellites are also pretty common. I recently got such a request from our CWA class so I decided to put together a session on this topic.
We covered a number of topics and demonstrations during the session including:
How to put together a simple station and work FM EasySats with HTs and a handheld antenna
A recorded demonstration of some contacts using FM EasySats
How-to build a computer-controlled station and work Linear Transponder Satellites
Fixed and Portable Satellite Station Antenna options
A recorded demonstration of some contacts using Linear Satellites
There are lots of articles about building and operating Amateur Satellite Stations here on our blog. The following are links to several articles and series on this topic:
Winter Field Day 2020 is almost here! A few weekends ago, several of us got our QTH to complete the final station test for our planned 5O operation in Winter Field Day (WFD). Activities including setup and testing of a new, Portable Networking Pod and three of our five planned Winter Field Day stations. We are planning to use the N1MM+ Logger in a networked configuration this year…
This article covers equipment and networking aspects of the Nashua Area Radio Society’s planned 5O setup for Winter Field Day 2020. All of our stations will use the N1MM+ Logger to support SSB Voice, CW, and Digital modes.
We are continuing to make progress on our preparation for VHF+ Operations at Winter Field Day (WFD) 2020. We had a lot of fun on the VHF+ bands at WFD 2019 and we are planning to add some more bands for our operation this year. We’ve assembled a portable mast system to put us on 3 new bands…
We’ve been busy with preparation for Winter Field Day 2020. My part of this project is to increase our participation in operations on the VHF+ bands (6m and above). We are accomplishing this with a 30 ft push-up mast, some new antennas, and using Transverters for the 1.25m and 33cm bands. You can read more about our preparations and the equipment that we will be using on the VHF+ bands via the link above.
We continued to test our Portable Satellite Station 4.0 as part of AMSAT’s 50th Anniversary Celebration WAS Activations. You can read about the activations and our station’s performance via the link above. Overall, we were pleased with how the portable setup performed. The weakest link was the downlink performance of our antenna system. We are working on some ideas to improve this element of our setup – more to come on this project…
Portable Satellite and Grid Square Activation Station
We were up on Mt. Washington here in New Hampshire this past weekend and we decided to use the SOTA activation as a test for our updated Portable Satellite Station 4.0. It turned out that the station was also a great SOTA and Grid Square Activation station for terrestrial contacts.
An upgraded Portable Satellite Station has been part of our 4.0 Satellite Evolution plan from the start. The goals for the station included:
Support for FM and Linear Satellite Contacts
Computer Control to handle Doppler Shift
A simple, easy to deploy portable antenna system for 2m and 70cm
Full-Featured 100w/75w Transceiver with External Preamps for good weak-signal performance
Quite, Green Power using Solar Energy and Batteries
Station Components
Our upgraded portable station uses the following components:
A Solar-Battery Power system capable of operating the station continuously for a full day
A laptop computer for Satellite Tracking and Doppler correction
Portable Antenna System
Elk Antenna on Tripod
We decided to keep our antenna system simple and quick to deploy. We choose a portable 2m/70cm antenna from Elk and mounted it on a camera tripod. A carpenter’s slope gauge is used as an elevation indicator and our iPhone serves as a compass to point the antenna in the azimuth direction. A weighted bag, Bungie cord, and a tent stake anchor the tripod in the windy conditions on the mountain. A 15 ft length of LMR-240uF coax with N-connectors makes the connection between the antenna and the rest of the station.
Station Transceiver and Supporting Gear
Portable Station Transceiver and Preamps
We decided to mount the station Transceiver and supporting gear on a piece of plywood to make it easy to transport and setup. The components from lower-right moving counter-clockwise include:
The preamps are powered and sequenced by the IC-910H through its coax outputs. The 70cm side of the second diplexer is used as a filter to prevent transmissions on 2m uplinks from de-sensitizing 70cm downlink signals.
Portable Station Electronics
The use of the mounting board for all of the components allows the station to deployed quickly and helps to ensure reliable operation.
We used a MacBook Air Laptop running MacDoppler to control the transceiver’s VFOs (via a USB CI-V cable). MacDoppler also provided azimuth and elevation data used to point the antenna during satellite passes.
Portable Power
Portable Solar-Battery Power System
Powering a 100w radio in a way that allows continuous use for a day can be a challenge. It’s important to do this in a way that does not generate noise so we do not disturb others trying to enjoy the outdoors. We met all of these needs using a combination of solar power and batteries.
Portable Solar Power
The primary source of power comes from a pair of 90w foldable solar panels from PowerFilm. The panels are wired in series and connected to an MPPT Charger which charges a pair of batteries. This approach allows the system to provide usable power when it is cloudy and the voltage output of the solar panels drops.
We use a pair of A123 10 Ah LiPo battery packs to supply high-current capacity when transmitting. The solar-battery combination is capable of maintaining full battery voltage while supporting the continuous operation of our station for a full day.
The MacBook Air Laptop batteries are adequate to operate the station during the available satellite passes. We have a 12V DC to 120 VAC inverter which can power the computer from our solar battery setup if needed.
Station Performance
View from Mt. Washington Summit
Our portable station did very well during its initial test! I had to move the antennas and operate the station by myself on this activation which limited my ability to make a large number of contacts during the limited number of satellite passes that were available. Still, I was able to make 6 solid contacts through AO-91 and AO-85 while on Mt. Washington. I did not have a suitable linear satellite pass to make contacts but I was able to hear the EO-88 beacon with no problems and confirm that the doppler correction system was working well.
The station also put in a great performance visa-vie 2m terrestrial contacts. We made a total of 70 contacts using 2m FM and USB! We received many good signal reports with our longest contacts being some 275 mi from our location. We also worked stations on four other SOTAs this way.
Learnings and Next Steps
Our station exceeded my expectations during our initial test on Mt. Washington – especially in terms of the number of Terrestial Contacts that I was able to make with it. I did notice that the transmit side of the system was quite a bit stronger than the receive side. This is an indication that a better antenna would help.
We changed the antenna polarization to vertical for 2m FM contacts and to horizontal for 2m USB contacts. This helped the receive side performance quite a bit.
I found that a headset was essential for satellite and terrestrial weak-signal operation in USB mode. I was able to use the hand microphone and the radio’s speaker for most of the 2m FM contacts that I made. This gave interested onlookers a chance to experience Amateur Radio.
Satellite operation would have been much easier and more productive with a helper to handle pointing the antenna while we operated. This improvement will need to be coupled with a headset/speaker combination that allows the person that is pointing the antenna to hear the quality of the downlink while moving the antenna and finding the best polarization.
I am looking forward to doing some grid-square activations using our upgraded portable station. It was a pleasant surprise to find as much interest in Terrestial contacts on the 2m band as we did. The Nashua Area Radio Society does several SOTA activations each year and I am looking forward to using that station for these as well.
Here are links to some additional posts about our Satellite Station 4.0 Projects: