EME II Tech Night – Station Construction and Operation
We recently did a second Tech Night Program on EME as part of the Nashua Area Radio Society’s Tech Night program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to build and operate an EME station for the 2m band.
January 2021 Tech Night – EME II: Station Construction and Operation
We’ve been making good use of our Satellite Ground Station. Our existing 2MCP14 and 436CP30 antennas have enabled us to make over 2,000 satellite contacts; working 49 of the 50 U.S. States, 290+ Grid Squares, and 31 DXCCs. Our station is also an ARISS Ground Station which enables us to help Schools around the world talk to astronauts on the ISS.
As you can tell, we are pretty active on Satellites so we decided to take our station up a level by upgrading our antennas. We choose the 2MCP22 and 436CP42UG antennas from M2 Antenna Systems with optional remote polarity switches. These are larger yagis with booms over 18+ ft in length. The upgrade required us to improve the mechanical aspects of our Satellite Antenna System as well.
Antenna Assembly
2MCP22 Parts Inventory
The first step in the project was to unpack and carefully inventory all of the parts for each antenna. This included carefully presorting and marking each element as we did during the assembly of our EME antennas.
2MCP22 Completed Antenna
The new antennas are quite large and they took most of the available space in our workshop during assembly. Getting good results from any antenna is all about attention to the details. Small things like turning the boom sections to get a good alignment of the elements, using NOALOX on the boom sections and hardware to prevent corrosion and galling, carefully measuring and centering the elements, etc. are all good things to do.
2MCP22 Feedpoint Assembly including Polarity Switch Upgrade
The feedpoint system on these circular polarized antennas requires careful attention during assembly. It’s important to install drive element blocks, shorting bars, polarity switches, feedpoint splitters, and all phasing lines EXACTLY as shown in the antenna assembly manual. Failure to do these steps will likely results in SWR problems down the road.
436CP42UG Feedpoint Assembly
The images above show the feedpoint assemblies for both of our new antennas.
New Satellite Yagis Ready For Installation
A rough SWR measurement with the antennas on the ground was performed to check for assembly errors. It’s a good idea to use a 12V battery to test the antenna SWR’s in both RHCP and LHCP. These tests checked out fine and we are ready to begin installing the antennas on our Tower.
Old Antenna Takedown and Work Stand
Old Antenna Assembly Takedown Using Boom Lift
The next step in the installation was to take down our existing antennas. We rented a 50 ft Boom Lift for the project. The lift makes the work much easier and safer.
Old Antennas on Test Stand
We have a ground tower that we use for portable satellite operations. It was fitted with a longer mast to create clearance for our larger antennas. We lowered the existing antenna system onto the ground tower for disassembly, installation, and testing of our new antennas.
It’s important to fully test a complex antenna system like this on the ground prior to installation on a Tower. We have routinely found and corrected problems this way. This approach also enabled us to properly adjust our cross boom and antenna support trusses and balance the final assembly properly. All of the required adjustments are MUCH easier with the antennas on the ground.
We also run our rotators under computer control for at least one full day before installing the completed assembly on our Tower. We have consistently found and corrected problems with cabling and balance this way.
Antenna Mounting and Trussing
2MCP22 Boom Truss
The new antennas have very long booms (approximately 18 ft) and they have a tendency to sag. Add the ice and snow load that we experience here in New England and you end up with quite a bit of stress on the booms over time. Robert at M2 Antenna Systems came up with a custom truss assembly for our installation to address this problem. It’s important to minimize any metal in a setup like this to avoid distortion of the antenna patterns. The trusses use a solid fiberglass rod and small turnbuckles to support the ends of each antenna boom. There is much more weight on the rear of the booms due to the weight of the attached coax cables and polarity switches. For this reason, we located the truss anchor point for the rear of the boom such that it creates a sharper angle for the truss ropes at that end of the truss. This reduces the compression load on the rear of the boom and enables the truss to better carry the weight at the back of the antenna.
436CP42UG Boom Truss
Installing a truss on the 70cm yagi is much trickier due to the tight pattern of this antenna. We minimized the added metal components by drilling the antenna boom to mount the truss plate directly to the boom via bolts.
We relocated the boom support plates on both antennas as far to the rear of the largest boom sections as possible to improve overall antenna balance. The clamps were also adjusted to change the orientation of the elements from vertical/horizontal to a 45-degree X arrangement. This maximizes the separation between the element tips and other metal components like the cross boom and truss plates.
Tubing Drill Guide
All of this required drilling some new holes in our antenna booms. We used a Tubing Drill Guide and C-clamps to perform the required drilling operations accurately.
Satellite Antenna Boom Assembly
The photo above shows the new antennas mounted on our cross boom. The modifications worked out great resulting in well supported and aligned antennas on the cross boom.
Balancing The Array
Cross Boom Counterweight and Trusses
It’s very important to properly balance any antenna assembly that is used with an elevation rotator. Failure to do this will usually result in the failure of your elevation rotator in a short period of time. We initially had some pretty major balance problems with our new antennas. This is due, in part, to the weight of coax cables that run from the antenna feed points along the L-Brace Assemblies. The added weight of the Polarity Switches near the rear of the booms was also a significant contributor to this problem.
We created a counterweight by replacing one of our cross boom truss tubes with a metal section of pipe about 4 ft long. The pipe acts as a counterweight to the weight of the coaxes, etc.
Wheel Weights Used for Balancing
Next, we added 4 1/2 pounds of weights to the front on the metal pipe. We used several layers of Wheel Weights built up in multiple layers to get the necessary counterweight. A heavy layer of electrical tape and some large cable ties were used to ensure that the weights say in place.
This got us close to a good balance but the boom of the 2MCP22 was still significantly out of balance. Matt at XX-Towers came up with a good solution to this problem. We added a few strips of wheel weights inside the very front of the boom of the 2MCP22 to finally get the antennas balanced. A combination of the adhesive tape on the weights and two small machine screws through the boom ensures that the weights remain in place and do not short the elements to the boom.
Finally, we adjusted our Green Heron RT-21 Az/El Rotator Controller to slow down the ramps for the rotator. Final testing indicated the smooth operation of the rotator at slow speeds.
SWR Testing and Baseline
2MCP22 Installed SWR
A final check and baseline of all of our antennas were made on the ground. Both RCHP and LHCP modes were checked and recorded for future reference.
432CP42UG Installed SWR
We found that some fine-tuning of the locations and routing of the phasing lines on our 436CP42UG improved the SWR curves. This is a common situation and it’s well worth the time to make small adjustments while carefully observing how they impact your SWR readings. The phasing cables are firmly secured to the antenna boom after the fine-tuning is complete.
New Antenna Installation and Integration on Tower
Upgraded Antennas Going On Tower
The next step in our project was to install the updated antenna assembly back on our Tower. We had to push the lower rotator and mast up about 4 ft to accommodate the larger antennas. We removed our 6M7JHVHD Yagi and temporarily fastened it to the side of our tower to make these steps easier. We also took the opportunity to work on our 6M7JHVHD Antenna to adjust the length of the Driven Element for better SWR performance in the FT8 and MSK144 section of the 6m band.
Satellite Tower Infrastructure and Accessories
There is quite a bit of feed line and control cabling involved in a complex antenna system such as ours. The next step in the project was to reconnect all of the cables and coax feedlines.
Control Cable Junction Box at the Base of VHF Tower
We use small junction boxes on our tower and a larger one at our tower base to make it easy to remove and reinstall all of the required control cables. Our approach was to hook up and test the rotators first to ensure that we did not have any new mechanical or balance problems. This step checked out fine. The stiffer chrome molly mast and its added length actually resulted in smoother operation of rotators than we saw during ground testing.
The final step was to work through the other control cables and feed line connections; testing each connection as we went. The Boom Lift makes this work much easier to do.
We took advantage of the availability of the Boom Lift and added some additional enhancements to our VHF Tower. Previously. changing the battery in our Weather Station involved climbing our main tower to 50 ft. We moved the weather station to the 30 ft level on our VHF tower to make this maintenance step easier.
We also added an ADS-B antenna and feedline for the Raspberry Pi FlightAware tracker in our Shack. The parts that we used for the ADS-B antenna include:
Initial testing of our new antennas is showing some major improvements. The uplink power required to work LEO satellites has been reduced significantly. As an example, I have worked stations using the RS-44 Linear Satellite with just 0.4 watts of uplink power out of our Satellite IC-9700. The signal reports we’ve received have been excellent as well.
More About Our Ground Station
Here are links to some additional posts about our Satellite Ground Stations:
Our new 2m EME Antenna System has been performing very well. One area that we noticed that could use improvement was the alignment of our antennas as we move them in the Elevation plane. The problem is caused by the weight of the coax feedlines running from the antenna feed points to the power dividers on our H-Frame assembly. Our H-Frame assembly includes T-Braces to support the coax feedlines but the T-Braces tended to bend and distort the alignment of our antennas as the Elevation Rotator is moved.
Custom H-Frame Truss System
Matt at XX-Towers and Robert at M2 Antenna Systems helped us to come up with a very nice custom solution to solve these alignment problems. The solution consists of two additional truss cables on each of the H-Frame’s T-Brace assemblies. The truss cables are made from Phillystran Cable which is non-conductive and is adjusted via Turnbuckles that are anchored at the center of the H-Frame’s Vertical Risers. This approach minimizes any metal in locations that would affect the pattern of our antennas.
Cross Boom Extension
The first truss is mounted on a short custom extension on each end of our H-Frame’s Cross Boom and is run to an eye bolt in the center of each T-Brace Vertical Rod.
T-Brace Main Truss
These risers stabilize the tendency for the T-Brace Vertical Assembly to flex and move towards the center of the H-Frame when the full weight of the coax cables are bearing on them at various elevation angles. Careful adjustment of the combination of these new Truss Cables and the existing 45-degree T-Brace Horizontal Support Assemblies results in the rear of each antenna boom staying perfectly aligned as we rotate our antennas in elevation.
T-Brace Rear Truss
The other problem that our custom Truss Solution addresses is the tendency for the weight of the coax cables to bend the rear of the antenna booms down when the antennas are at 0-degrees in elevation. The bending is due to the weight of the coax cables on the T-brace being unsupported and bearing down on the rear of the antenna booms. This problem is solved by a second Phillystran truss cable that runs from the metal section of each Vertical Riser assembly to the junction between the rear of the bottom antenna booms and the associated junction of the Vertical T-Brace Assemblies.
We fastened the Phillystan cables directly to the junction point without the use of any metal hardware to ensure that the pattern of our antennas was not affected. These secondary Trusses now carry all of the weight of the coax cables on the T-brace as the antennas approach at 0-degrees in elevation and have eliminated the bending at the rear of our antenna booms.
With these modifications, our antennas remain perfectly aligned at any elevation angle. There is also noticeably less stress on the fiberglass sections of the Vertical Riser Assemblies since they are no longer carrying the load of the coax cables.
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Tech Night on this topic. You can find the EME Tech Night here.
After a year’s worth of planning and 10 months of construction, we have our new 2m EME Antenna System installed on our EME Tower and working! This stage of our project took about a week and included a lot of help from Matt and Andrew at XX Towers.
Final Preparations
Antenna Ground Test
The first step was to arrange the four 2MXP28 Yagis that we built on saw horses near our EME Tower and check each antenna’s vertical and horizontal SWR. Performing SWR measurements with the antennas close to the ground like this does not produce very accurate measurements. Doing this does allow one to spot potential problems if some of the measured SWR fail to show a resonance or are wildly different than the other antennas in the group. All of our antennas checked out as expected.
50 Ft Boom Lift, H-Frame Cross Boom Assembly On The Ground
We also rented a 50-ft Boom Lift and set it up near our EME Tower. A tool like this is almost essential to safely assemble and adjust a large, complex antenna system involving an H-Frame. It also speeds up the assembly and adjustment process considerably.
Elevation Rotator and H-Frame
Elevation Rotator Installation on Mast
The first step was to install the MT-3000A Elevation Rotator on the mast. We pre-installed the control cable for the elevation rotator before installing it on the tower. This enabled us to get it temporarily hooked up to the Rotator Controller in our shack so that we could adjust the elevation of the H-Frame and Antennas as we installed them.
With the H-Frame in place, we installed the upper 2MXP28 Yagi Antennas next. The image above shows the rigging of the boom trusses which was done on the Tower.
Lower Antenna Installation and Adjustments
Next came the lower 2MXP28 Yagis. We spent considerable time leveling and aligning all of the Antennas and H-Frame components at this stage.
Feedlines, Electronics, and Balancing
T-Braces and Feedlines
The T-Brace assemblies and Antenna Phasing Lines were installed next. Each Antenna requires two LMR-400 Phasing Lines and these coax cables add considerable weight to the backs of the Antennas. The T-Braces support these cables and help to align the Antennas on the H-Frame.
We replaced the Vertical H-Frame Boom Truss Pipe with a heavy section of Mast Pipe to act as a counter-weight and balance the final H-Frame and Antenna assembly. This step is critical to ensuring a long life for the Elevation Rotator’s drive system and chain.
Phasing Lines, Power Dividers, and Feedline Connections on Crossboom
The photo above shows the final installation of the Power Dividers, Antenna Phasing Lines (there are 8 in total), the MAP65 Preamp Housing, and the Feed and Control Cables that run down the Tower. We took the time to carefully make SWR measurements on each Antenna and check all of the connections to the MAP65 Housing at this stage.
Antenna Integration Details
Rotator Loop
The Rotator Loop contains the following cables and Coax Feedline connections from the H-Frame/Antenna assembly:
Vertical and Horizontal Rx Feedlines
Tx Feedline
Elevation Rotator Control Cable
MAP65 Housing Control Cable
All of these cables are bundled and securely fastened to the H-Frame Cross Boom and to the Tower. Andrew is a master at this sort of rigging!
Control Cable Connections at Tower Base
I took some time to finalize the Control Cable connections at the base of our tower. Time was spent with a voltmeter doing checks to ensure that everything was connected correctly and working. This effort resulted in the discovery and correction of some wiring errors and a faulty relay in the MAP65 housing. Had I not done these steps, we would have surely destroyed the Preamps in the MAP65 Housing when we transmitted for the first time.
Testing Our New Antenna System
Vertical Polarity Tx SWR at Shack
A series of SWR measurements were taken before sealing the coax cable connections on the tower. SWR measurements were checked and recorded for future reference at the following points in the feedline system:
At the ends of the phasing lines associated with each antenna
At the output of the two Power Dividers on the tower
At the shack entry ground block
Measurements were taken separately for both the Vertical and Horizontal elements of the final Antenna System. The image above shows a typical SWR measurement for our final Antenna System.
I did many final checks and adjustments while the Boom Lift was still here. These steps included:
Checking the oil level in the elevation rotator
Re-lubing the elevation rotator chain
Adjusting the limit switch stops on the Elevation Rotator to allow enough over-travel for future adjustments and maintenance
Checking all hardware for tightness
Sealing all coax cable connectors with Coax Wrap and Electrical Tape
Making some final adjustments to align the four 2MXP28 Antennas with each other and the H-Frame
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Tech Night on this topic. You can find the EME Tech Night here.
We also spent some time identifying and inventorying all of the parts. M2 supplied upgraded aluminum saddle clamps for our H-Frame. These parts improve the clamping action between the components and also reduce stresses on the fiberglass and other tube parts.
Truss Cable Parts Prep
We spent some time preparing the parts for the Phillystran Truss cables for the Main Cross Boom and Vertical Risers. Prep included a drop of oil on each of the clamp threads and some NOALOX Antioxidant Compound on the turnbuckle threads. We also added stainless steel jam nuts to the turnbuckles to lock them in place after installation.
With this done, we assembled the Main Cross Boom, Vertical Risers, and T-Brace sections. This helped us to get all of the parts and hardware in the correct locations and to become familiar with how all of the parts fit together. We used a generous coat of NOALOX on all of the metal to metal tubing joints to facilitate the assembly and to prevent corrosion from forming at the joints of the metal tube sections. This sort of corrosion can cause increased noise levels after the array is installed outdoors for some time.
Main Crossboom Assembly
Cross Boom Truss Assembly
Next, the 3″ Main Cross Boom and its support Trusses were assembled. We carefully measured the assembly and marked the center as well as the locations of the Vertical Risers on the Main Cross Boom using a sharpie pen. these measurements will make the final assembly of the H-Frame on our Tower much easier.
Cross Boom Truss Details
The Phillystran Truss Cables and associated hardware were assembled and adjusted next.
Vertical Riser Assembly
Vertical Riser Mock-up
We decided to Mock-up a section of the Vertical Riser center tubes and the associated Vertical Riser Truss supports on the Main Cross Boom. This allowed us to confirm that the final horizontal spacing of the Risers was correct and to get the clamps associated with this part of the H-Frame assembly properly oriented and squared.
Fiberglass Tubing Reinforcements
Reinforcement Bushing Design
The Vertical Risers use fiberglass tubes at each end to provide a non-conductive mast for mounting the Antennas and their Truss Supports. The Antennas we are using are large and will need to be tightly clamped to ensure that they stay aligned and in place. The Antenna and associated Truss U-clamps put a great deal of stress on the fiberglass tubes and they can become distorted or damaged over time.
To prevent this, we decided to make a custom set of reinforcement bushings from polycarbonate plastic. Bushings were designed to reinforce all of the points on the fiberglass tubes of both Vertical Risers where U-Clamps will be used. You can see the full set of specifications for the bushings here.
W2SW Custom Reinforcement Bushings
Spencer, W2SW, owner, and founder of AntennaSys, Inc. made a beautiful set of custom bushings for us. Spencer has an amazing machine shop at his home and the parts turned out great and fitted precisely.
Reinforcement Bushing Installation
The reinforcement bushings were installed at the correct depth in each of the Fiberglass Tubes and are pinned in place using small stainless steel machine screws.
One consequence of installing the reinforcement bushings is that water can accumulate in the fiberglass tubes if they are in a horizontal position for a period of time. If such accumulated water freezes, it could cause damage to the tubes. This problem is easily solved by drilling a series of small 1/8-inch drain holes in the tubes on the bottom side when they are horizontal.
Assembled Vertical Riser
The final step was to assemble all of the parts associated with both Vertical Risers. The risers were marked to indicate the location of each Antenna Boom and Truss Clamp and the clamps were installed. The Phillystran Truss Cables were installed in the Eye Bolts on the Vertical Risers.
As we did with the Antenna Truss Cables, we will wait to install the turnbuckles until the Vertical Risers are installed on the tower and balanced. This will likely change the length of the Phillystran Truss cables.
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.
Elevation Rotator and MAP65 EME Preamp System Test
The next major component in our new EME station is the assembly of the Elevation Rotator. This step also involves pre-assembly and testing of the MAP65 Pre-amp Housing, Antenna Power Dividers, Transmit/Receive Sequencer, and the Rotator Controller. Here are the components involved in this part of our project:
We choose the MT-3000A Elevation Rotator for its heavy-duty construction. This will be important to handle the weight of our EME antenna array as well as the winter conditions that we encounter here in New England.
Elevation Rotator Assembly
MT-3000A Elevation Rotator Parts
The first step was to inventory all of the parts for the MT-3000A Elevation Rotator and carefully read the MT-3000A manual from M2 Antennas.
Assembled MT-3000A Elevation Rotator
Assembly of the MT-3000A is pretty straight forward. It uses a chain-drive system to produce a very strong, high-torque elevation rotator system. It’s important to fill the gear-box with the supplied gear oil and to lube the chain with the proper lubricant prior to testing and installing the rotator. Spray style chain lubricants for motorcycle chains work well in this application.
RT-21 Configuration of the MT-3000A Elevation Rotator
The MT-3000A is a pulse-counter style rotator with 0.1-degree positioning resolution. It required a custom setup in the Green Heron RT-21 Az/El which was easily accomplished with Green Heron Engineering’s setup utility. One must determine the correct Divide Ratio setting by experimentation. When the correct value is found, a rotation of 90 degrees on the controller will result in exactly 90 degrees of actual movement by the MT-3000A. This calibration was much easier to do with the MT-3000A in our shop than it would have been once the unit was installed on our tower. We also set up the RT-21 Az/El Controller to allow for 5 degrees of rotation beyond the 0 and 90-degree points.
After some testing, I decided to use the 42Vdc tap setting in the RT-21 Elevation Controller with our MT-3000A. The specifications for the MT-3000A allow for up to 42 Vdc to be used to run its motor. To be safe, we set the Max Speed setting in the RT-21 Az/El to “8” which resulted in a maximum of 40 Vdc measured with a voltmeter at the output of the controller.
Assembly and Integration of MAP65 Housing and Cross Boom
Elevation Rotator and MAP65 Preamp Housing Assembly
A control cable for the MAP65 EME Preamp Housing was made up and connected to the terminal strip on the housing.
EME Sequencer Testing
S2 Sequencer
The S2 EME Sequencer from M2 Antennas is designed to control the MAP65 Housing but its internal jumpers must be properly set to do this. We spent some time with the manual for the S2 Sequencer and for the MAP65 Housing carefully setting the S2 Sequencer’s jumpers and verifying proper voltages at both the output of the S2 Sequencer and the terminal strip in the MAP65 housing with a voltmeter. The manuals for the S2 EME Sequencer and the MAP65 EME Preamp Housing were clear on these steps.
Mounting Power Dividers
Power Divider Mounting Bracket
The next step in this part of our project was to mount the M2 Antennas 4-Port Power Dividers that are used to connect the MAP65 Pre-Amp housing to the four 2MXP28 Antennas. Two power dividers are required as each antenna has a separate feed point connection for their horizontal and vertical polarities. We made up some custom mounting brackets for the power dividers from 1-1/4″ aluminum angle material.
MAP65 EME Preamp Housing Connections
The MAP65 Preamp Housing connects to the outputs of the two Power Dividers that feed the H-polarity and V-polarity of the antenna array. The outputs from the MAP65 EME Housing connect to the H-polarity and V-polarity receive coax cables and the Transmit Hardline Coax Cable that runs from the tower to our shack.
Coax Interconnect Cables
Power Divider and Feedline Jumper Coax Cables
The final step was to make up LMR-400 coax cables to connect the MAP65 Preamp Housing to the Power Dividers. We used right-angle male N connectors to make the connections to the 4-Port power drivers to avoid sharp bends in the cables.
We also made up three additional LMR-400uF coax cables to connect the MAP65 Preamp Housing to the coax Tx and Rx feedlines that are installed on our tower. It’s important to keep the H-Pol and V-Pol cables as close to identical in length as possible to minimize and phase differences between the associated receive feedline systems.
Next Steps
The next step in our project will be the final assembly and preparation of the H-frame which will be used to mount our four 2MXP28 Antennas. You can read more about our EME station project via the links that follow:
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.
Now that spring is here, we’ve continued work on our EME station project. The most recent project was to build complete the ground system for our new EME tower. The proper way to ground a tower is shown above. Each leg of the tower is connected to an 8′ ground rod via a heavy-gauge ground cable. The cable is attached to the tower leg using stainless steel clamps meant for this purpose. The three ground rods associated with the tower legs are then bonded together using a heavy copper ground cable ring.
Ground Cable CAD Weld
The ground cables are welded to the top of the ground rods using CAD weld on-shots. This creates a strong connection that will not corrode or fail. It is important that the ground rods be free of dirt, corrosion, oxidation, and burrs before performing the CAD welding. We used a combination of 3-wire and 4-wire one-shot CAD welds to build our ground system and connect it to the bonding system running from out tower to the entry to our shack.
Main Grounding System Bonding
The final step was to connect the bonding run from the tower to the perimeter grounding system around our house. This completed the tower grounding system and enabled us to complete our final permit inspection courtesy of our local building inspector.
Finished Tower Base
With all of this work done and the inspection complete, we added a mulch bed around our new tower to make this area of our lawn easy to maintain.
The next step in our project is to begin building the antennas that will go on our EME tower. You can read more about our EME station project via the links that follow:
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.
Snow is coming to New England this weekend so we wanted to get the control cables run to our new EME Tower before the ground is covered with snow. The project involved installing a Utility Enclosure on our tower and running three control cables to our shack for the following devices:
Az-El Rotator and Preamp Switching Control Connections
We began by install some barrier strips and a copper ground strap in the Utility Enclosure. The copper strap provides a good ground connection to the tower and associated grounding system. The enclosure is clamped to the tower using two stainless steel clamps.
The final step was to hook up our rotator cables to a Green Heron RT-21 Az/El Rotator Controller in our shack. We do not yet have our elevation rotator so we tested the M2 Orion 2800 Azimuth Rotator that is installed in our tower. The azimuth rotator is configured so that the rotator’s dead spot faces north. This is a good configuration of our planned EME operation.
With all of our control cabling in place, we are ready to begin preparing our Antennas, Elevation Rotator, H-Frame, and MAP65 components to go on our EME Tower. We’re hoping that the weather will cooperate and enable us to get these steps completed during this winter.
Here are some links to other articles in our series about our EME Station 2.0 project:
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.
Our goal for this phase of our EME Station Project is to get our new tower up, install the Azimuth Rotator and Mast, and run the hardline and coax cables for our antennas from the shack to our new tower. Our EME tower is constructed using Rohn 55G tower sections. It will be 26 ft tall and will have approximately 18″ of our 3″ mast protruding above the tower. The tower is a free-standing/guyed hybrid design with the first section being cemented into the ground.
Matt, KC1XX, and Andrew of XX Towers began by installing a winch and a gin pole on the base section of the tower. They used the Gin Pole to hoist the second tower section into place and secure it. They also attached the top plate to the third tower section in preparation for installing it along with our mast.
Mast and Top Tower Section Going Up
It is always a challenge to install a mast inside a new tower. The mast we are using is a heavy, 22 ft 4130 chrome molly steel mast that weighs over 250 lbs. Getting the mast inside the tower was quite a feat! Matt and Andrew rigged the top tower section and the mast together and pulled both up together on the Gin Pole. Next, one leg of the top tower section was attached and a second pully was used to pull the mast up through the top tower section until it could be placed inside the tower. The last step was to raise the top tower section a second time using the Gin Pole to seat it on top of the rest of the tower. Finally, the mast was lowered inside the tower to the base and the top tower section was bolted on to complete the tower.
Upper Guy Anchor Bracket on Tower
The next step involved attaching the upper guy anchor bracket to the top section of the tower and rigging the guy anchor cables. We decided to use Phillystran Guy Cable to avoid interactions with our antennas.
Guy Anchor Cable
The completed cables are tensioned using turnbuckles. We adjusted the cables to plumb the tower and then safety-wired the turnbuckles so they will not come loose.
Azimuth Rotator in Tower
The next step was to install an M2 Antenna Systems Orion 2800G2 Azimuth Rotator in our tower. The use of the 22 ft mast allowed us to place the rotator about 5 ft above the ground where we can easily service it in the future. The long mast also acts as a torque shock absorber when the rotator starts or stops moving suddenly. With the rotator in place, we attached the mast and clamped it at the rotator and thrust bearing at the top of the tower.
Pushing Coax Cables and Hardline Through the Conduit
We used a cutoff plastic bottle to protect the ends of the coax cables and hardline as we pushed them through approximately 50 ft of buried 4″ conduit. The conduits were constructed to create a gradual turn into and out of the ground and the cables went into the conduit smoothly.
Coax Cables Exiting the Conduit Near Our Shack
With the cables in place, we installed N-female connectors on each end of the 7/8″ hardline. We used rubber reducers to make it easier to deter water from entering the conduits where the cables exit.
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.
The first part of our EME project is to put up a new tower to support our antennas. Our plans call for a 26′ tower built using three Rohn 55G tower sections. Four feet of the first section of the tower is cemented in a concrete footing to anchor the tower’s base. The tower is also going to be guyed to ensure that it is very stable.
Digging Footings for our New Tower
We are working with Matt Strelow, KC1XX, and Andrew Toth of XX Towers to put up our new tower. Matt brought out his tractor and dug the footings for our tower and for the associated conduits that will carry coax and control cables to our shack. The photo above shows the completed hole and form for the main tower base. Matt is working on the footings for one of the three guy anchors.
First Tower Section and Rebar Cage
Here’s a closer look at the tower base. The footing includes a rebar cage to reinforce the concrete footing. There is also 6″ of crushed stone in the bottom of the hole that the tower legs sit it. It is very important that the bottoms of the tower legs remain open and do not become plugged with cement so that water in the legs can drain. If the legs cannot drain properly, water will accumulate and freeze. This can split open the tower legs and ruin the tower.
Cable Conduits with Drains
We also installed two conduits (a 4″ and a 2″ run of schedule 80 conduits) from the base of our tower to our shack. These conduits will carry coax feed lines and control cables to our new tower. We used a pair of 22° elbows to create a smooth transition to bring the conduits out of the ground. This will ensure that our hardline and other coax cables can be placed in the conduits without creating excessive bends.
Conduits will fill with water even if they are sealed. This happens as a result of the condensation of water in the air. To prevent our conduits from filling with water, we created two drain pits at the bottom of the trench at the two lowest spots in the conduit runs and filled them with stone. We drilled a few holes in the bottom of the conduits above the drain pits to allow the water to drain so our cables will remain dry.
Cadweld’ed Ground Cable Bonded to a Ground Rod
We also created a bonding ground cable run from our new tower to the ground system at our shack entry. The bonding system was created by driving an 8′ ground rod every 10′ in the trench between our new tower and the perimeter ground around our house.
#2 stranded copper ground cable was Cadweld’ed to each ground rod to create a ground path to bond the tower to the perimeter grounding system around our house. Using a Cadweld system is simple and produces strong connections that will not deteriorate.
Here’s a video that shows our a Cadweld is made. We’ll cover completing the ground connections to the tower and the perimeter grounding system in a future article.
Completed Footings – Ready to Pour Cement
Finally, we used some sections of rebar to firmly support the guy anchor rods prior to pouring the cement. If you look closely, you can see a portion of the rebar material in one of the guy anchor footings in the photo above.
Cement Mixer
The next step in this part of our project was to pour the cement. A large cement mixer brought the proper cement mix to our QTH and Matt used his tractor to transport the cement from the mixer to the forms. We did a bit of finishing work on the cement base for our tower and let the cement dry for a few days.
FInished Tower Base and Cable Conduits
The last step was to remove the forms and backfill the footings. A little work with a cement finishing block was done on the cement base to round off the rough edges left by the forms. The cable conduits emerge from the ground next to the tower base. You can also see one end of the copper bonding cable next to the conduits as well.
Completed Guy Anchor
Here’s one of the completed guy anchor rods after backfilling. We are going to let the cement harden for a couple of weeks and then we’ll complete the construction of our new tower.
Here are some links to other articles in our series about our EME Station 2.0 project:
If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.