6m Antenna Upgrade Part 2 – High-Power Preamp System

6m High-Power Preamp Housing

6m High-Power Preamp System Housing

The next step in our 6m Antenna upgrade project is to build two high-power preamp housings using high-performance, Low-Noise Amplifiers (LNAs). I plan to use one of the housings with

our existing 7-element Yagi on our house-bracketed tower and the other housing as a shared preamp system for the new 3-element stacks and the new 7-element Yagi on our 100 ft tower. The housings handle legal limit power (1500w) in all modes, including digital modes.

Preamp System Design

6m Preamp System Design

6m Preamp System Design

The diagram above shows the design of the 6m preamp systems we are building. The main RF path is switched via a pair of high-power vacuum relays. The low-noise LNA we choose includes an RF bypass feature so that the un-amplified receive path can be maintained when the LNA is turned off. I added a relay to the system to provide additional isolation and protection for the LNA when the system is in Tx mode. The protection relay also provides terminations for the LNA when the system is in Tx mode. This provides an extra degree of protection and ensures that the LNA is operational and stable as soon as the system switches to Rx mode. I have added a 1N4007 1000V diode across each relay coil to avoid voltage spikes on the control lines when the relays are de-energized.

System Components

6m Preamp Housing Component Details

6m Preamp Housing Component Details

All of the components in the preamp system are mounted in a 12″ x 10″ x 5″ NEMA housing from Cooper B-line (PN 12105-12CHC). I purchased two of these from a local electrical supply store. In addition to the relays and LNA, I used the following components to complete the 6m Preamp Housings:

Sections of 1/4″ aluminum bar stock are bolted to the mounting tabs on the enclosure to provide a means to anchor the enclosure to our towers via Saddle Clamps. Female N connector bulkheads provide the RF connections to the antenna and Amplifier/Feedline sides of the preamp system. The relays and LNA are mounted to the plate that came with the enclosure. A piece of aluminum bar stock material and some aluminum tubing were used to make a stand-off mount for a screw connector terminal block for the control connections to the preamp system.

Main Feedline Path

M2 HPR-1 High Power Coaxial Relay

M2 Antenna Systems HPR-1 High Power Coaxial Relay

I choose the HPR-1 Vacumn relays from M2 Antenna Systems to implement the main Tx/Rx path in the preamp system. These relays handle the power levels required and provide an extra degree of protection should an accidental hot-switch event occur. They provide 32 dB of isolation at 50 MHz which is not quite enough to fully protect the LNA at legal limit power. These relays are 24 Vdc powered and are switched together.

LNA and Protection Relay

6m Antenna Project

Advanced Receiver Research RF Switched LNA

I choose a GaAsFET LNA from Advanced Receiver Research (PN SP50VDG) for the preamp system. This LNA provides 24 dB of gain, has a low noise factor of 0.55 dB, and has a relatively high dynamic range and immunity to overload. The LNA is 12 Vdc powered. I choose at RF switched version of this LNA as it includes an RF relay that bypasses the LNA circuitry when the unit is powered off. This will allow me to turn off the LNA remotely and use my antennas without the additional amplification provided by the LNA. This also allows SWR measurements to be made through the preamp system without having to force the preamp system into Tx mode.

M2 HPR-1 High Power Coaxial Relay

M2 HPR-1 High Power Coaxial Relay

I added a DPDT relay from Tohtsu (PN CX-800N) to provide additional isolation to protect the LNA during Tx. This relay provides an additional 50 dB of isolation and is 24 Vdc powered. The protection relay is used to switch a combination of a short circuit (on the LNA input) and a 50-ohm termination (on the LNA output) during Tx. The combination of the relays provides over 80 dB of isolation during Tx. The isolation relay, the terminations, and the high overload capability of the LNA should ensure safe and trouble-free operation at legal limit power.

Power, Control, and Sequencing

microHAM Control Boxes And Hub

microHAM Control Boxes

I will use our microHam system to provide the switching and sequencing capabilities required to operate the preamp housings. The microHam system enables devices like LNAs to be placed in feedline paths where they can be shared among multiple antennas, amplifiers, and transceivers. The microHam system includes shared control boxes (ex. Relay 6 shown above) that provide relays that we will use to control the LNA powering and relays in our preamp housing. I will share more on this part of the project in the following article in this series. Our station includes bulk DC power supplies that provide 28 Vdc and 13.8 Vdc power to drive the relays and power the LNA in the preamp housings.

Next Steps

We’ll continue to post more articles in this series as our project proceeds. Here are some links to other articles in our series about our 6m Antenna Upgrade Project:

The next step in this project will be to configure our microHam system to support the Preamp Housings and the remote antenna switching elements that are part of our project.

Fred, AB1OC

Learn About Ham Radio at HamXposition @ Boxboro

Remote HF GOTA Station at HamXpositon

The Nashua Area Radio Society will be hosting several activities and displays at HamXposition this year. Our planned activities include:

  • NEW! Ham Bootcamp Program – a hands-on activity to help folks get on the air and build their stations
  • Our Ham Expo Display featuring information and hands-on activities you can do with Amateur Radio
  • Kit Building Activity featuring a choice of two different kits
  • Multiple Get On The Air Stations including an HF Remote GOTA station and an on-site Satellite GOTA station
  • Special Event Station using the N1T Callsign
  • NEW! Radio Programming Station – Get your FM HT programmed with a custom repeater list for your location
  • Two Forum Presentations by Nashua Area Radio Society Members

The ARRL and the HamXposition team have been helping us to promote our activities. You can see what the ARRL is saying about our plans in their recent posting – Dayton Hamvention Radio Club of the Year to Hold Ham Bootcamp at New England Convention.

You can learn more about HamXposition and our activities there at the HamXpostion website.

Ham Bootcamp

A First HF Contact at Ham Bootcamp

We have created a program that we call Ham Bootcamp. Bootcamp to helps recently licensed and upgraded hams to get on the air. We are making this program available to up to 100 HamXpostion attendees on a first-come-first-served basis.

Our Bootcamp program will run from 9 am to noon on Saturday, September 7th in the Federal Room. Bootcamp will feature tracks for both Technician and General class license holders. It is also a great place for folks who are not yet licensed to learn more about Amateur Radio and how to get on the air.

Our Bootcamp program will include:

  • How to make a contact and join a repeater net
  • Putting together an HF station
  • Radio, antenna, and feed line choices
  • Getting started with FT8 and digital modes
  • Exchanging QSL cards
  • Learning Morse code
  • Tips on upgrading
  • Introduction to ham radio kit building
  • Handheld radio programming tutorials

Ham Bootcamp is free.  Participants will receive discount certificates for a kit build at the show and for purchase of Ham Radio Gear from Ham Radio Outlet.

You can learn more about Ham Bootcamp on the HamXposition website and on our website.

Source: Interest and Excitement Around HamXposition Is Building

I wanted to share our plans for several hands-on activities at HamXposition @ Boxboro in September. We hope that Ham Bootcamp will be of particular interest to folks getting into Amateur Radio. You can learn more about Ham Bootcamp and all of our planned activities via the link above. We hope to see some of our readers at HamXpostion next month!

Fred, AB1OC

Raspberry Pi Satellite Tracker Interface How To

GHTracker Running On A Raspberry Pi 3

Raspberry Pi Satellite Tracker – GH Tracker Running On A Raspberry Pi 3 B+

I have received several requests to share the image and construction details for the Raspberry Pi Satellite Tracker Interface that we use with MacDoppler as part of the Satellite Stations here. You can read more about the motivation for this project and its initial design and testing here.

This article explains how to put a Sat Tracker together.

The information and software described here are provided on an “as is” basis without support, warranty, or any assumption of liability related to assembly or use. You may use information and software image here only at your own risk and doing so releases the author and Green Heron Engineering from any liability for damages either direct or indirect which might occur in connection with using this material. No warranty or liability either explicit or implicit is provided by either AB1OC or Green Heron Engineering.

Now that we have that out-of-the-way, here are the components that you need to build your own Sat Tracker:

The Sat Tracker image includes a display driver for the specific touch display listed above and will most likely NOT WORK with any other touch display. You will also need a Green Heron RT-21 Az/El or a pair of Green Heron RT-21 single rotator controllers from Green Heron Engineering that are properly configured for your rotators.

If you have not worked with the Raspberry Pi before, it’s a good idea to begin by installing NOOBS on your SD card and getting your Raspberry Pi to boot with a USB Keyboard, USB Mouse, and an HDMI display attached. This will give you a chance to get familiar with formatting and loading your SD card with the Raspbian build of the Debian OS for the Raspberry Pi. I’d encourage you to boot up the OS and play with it some to get familiar with the OS environment before building your Sat Tracker.

Etcher Writing Raspberry Pi SD Card Image

Etcher Writing Raspberry Pi SD Card Image

The first step in building your Sat Tracker is to put together the hardware and write the image to your SD Card. Use the enclosed instructions or search the web to find information on how to do each of these steps:

  1. Install the Heat Sinks on the Raspberry Pi 3 B+ Motherboard. Make sure your chipset heat sink will clear the back of the case. If it won’t, it’s fine to just install the CPU Heatsink.
  2. Assemble your case to the point where it is built up to support the touch display
  3. Carefully install your touch display on the Raspberry Pi Motherboard
  4. Install the remaining pieces of your case including the nylon screws and nuts which hold the case parts together
  5. Download the SD Card image from the link below, unzip it, and load the image onto your SD card using Etcher
  6. Install your SD card in the slot on your Raspberry Pi Motherboard
  7. Connect your Raspberry Pi to the outside world as follows:
    • Connect Two USB cables – one end to the Elevation and Azimuth ports on your Green Heron Engineering RT-21 Controller(s) and the other ends to two of the USB connections on the Raspberry Pi
    • Connect a wired Ethernet Cable to your Raspberry Pi via a common Ethernet Hub or Switch with a PC or Mac that has VNC Viewer Installed. You will need a DHCP server running on the same network to supply your Raspberry Pi with an IP address when it boots. Your router most likely provides a DHCP function.
    • Connect your USB power supply to the Raspberry Pi Motherboard and power it up

Your Sat Tracker should boot up to the desktop with GH Tracker V1.24 running. The touch display works fine for using GH Tracker but its a bit small for configuring things. To make the configuration steps easier, the image comes up running VNC Server. I like to use VNC Viewer on my PC to connect to the Sat Tracker using VNC to perform the steps that follow. Note that both the Raspberry Pi and your PC must be on the same sub-network for the VNC connection to work. I’ve also included the following commands in the Sat Tracker image which can be run from the Raspberry Pi terminal window to make the configuration process easier:

$ setdisp hdmi # Disables the TFT display & uses the HDMI interface
$ setdisp tft  # Disables the HDMI interface & uses the TFT display
$ reboot       # Reboots the Raspberry Pi causing
               # the latest display command to take effect

If you select the HDMI interface, you will find that VNC Viewer produces a larger window enabling you to perform the following configuration steps:

  1. First, you need to determine the IP address of your Sat Tracker. This can be done via your DHCP server or by touching the network icon (up and down arrows) at the top of the display on the Sat Tracker.
  2. Use VNC Viewer on your PC or Mac to connect to the IP address of your Raspberry Pi. The default password is “raspberry“.
  3. Once you are connected, open a terminal dialog on the Sat Tracker, set your display to hdmi mode via the command shown above, and reboot your Sat Tracker.
  4. Reconnect VNC Viewer to your Sat Tracker and click on the Raspberry button (Start Menu Button) at the top left of the screen, select Preferences, and run Raspberry Pi Configuration. Select Expand Filesystem from the System Tab. This will expand the filesystem to use all of the available space on your SD Card. You can also change the system name of your Sat Tracker and your login password if you wish. When you are done making these changes, reboot your Sat Tracker.
  5. Reconnect to your Sat Tracker via VNC Viewer and select Setup -> Rotator Configuration from the menu in the GH Tracker App. Select the TTY devices (i.e. COM Ports) associated with the Azimuth and Elevation connections to your RT-21 Controller(s) via the two dropdown boxes. You can also configure the operational parameters for GH Tracker at this time. The ones that I use with our Alfa-Spid Az/El Rotators are shown below.

    GH Tracker Rotator Configuration

    GH Tracker Rotator Configuration

  6. Configure your Green Heron Engineering RT-21 Controllers to work with your rotator(s). The settings below are the ones that we use with the RT-21 Az/El controller and Alfa-Spid Az/El Rotators that we have here.

    GHE RT-21 Az/El Controller Settings for Alfa-Spid Rotator

    Edit
    Setting Azimuth Elevation Notes
    Park Heading 0 degrees 90 degrees Set via MacDoppler. Minimize wind loading and coupling to antennas below. Also enables water drainage from cross-boom tubes.
    Offset 180 degrees 0 degrees Azimuth dead spot is South. Elevation headings are from 0 to 180 degrees.
    Delays 6 sec 6 sec Minimize relay operation during computer tracking
    Min Speed 2 3 Creates smooth start and stop for large array
    Max Speed 10 10 Makes large movements relatively quick
    CCW Limit 180 degrees 355 degrees CCW and CW limits ensures predictable Azimuth heading for range around 180 degrees. Elevation limits permit 0 to 180 degree operation. Elevation limits shown can only be set via GHE configuration app.
    CW Limit 179 degrees 180 degrees
    Option SPID SPID Alfa-Spid Az/El Rotator
    Divide Hi 360 360 Rotator has 1 degree pointing accuracy
    Divide Lo 360 360
    Knob Time 40 40 Default setting
    Mode NORMAL NORMAL Default setting
    Ramp 6 6 Creates smooth start and stop for large array
    Bright 2 2 Easy to read in shack
  7. Configure the source of tracking data to be MacDoppler (UDP) from the GH Tracker Source Menu. We use UDP Broadcasts with MacDoppler running on the same Mac with VNC Viewer to run our rotator. Finally, press the Press to start tracking button on GH Tracker and run MacDoppler with UDP Broadcast on and Rotators Enabled to start tracking.

    MacDoppler Tracking AO-91

    MacDoppler Tracking AO-91

  8. Once you are satisfied with the operation of your Sat Tracker, use VNC Viewer to access the terminal window on your Sat Tracker one last time, set your display to TFT, and reboot.

The most common problems that you’ll run into are communications between your Sat Tracker and your Green Heron Engineering RT-21 Controller(s). If the Azimuth and Elevation numbers are reversed in GH Tracker, simply switch the TTY devices via the Setup Menu in GH Tracker. Also, note that it’s important to have your RT-21 Controller(s) on and full initialized BEFORE booting up your Sat Tracker.

Most communications problems can be resolved by initializing your tracking system via the following steps in order:

  1. Start with your RT-21 Controller(s) and you Sat Tracker powered down. Also, shutdown MacDoppler on your Mac.
  2. Power up your RT-21 Controller(s) and let the initializations fully complete.
  3. Power up your Sat Tracker and let it fully come up before enabling tracking in GH Tracker.
  4. Finally, startup MacDoppler, make sure it is configured to use UDP Broadcasts for Rotator Control and make sure that Rotators Enabled is checked.

The VNC Server on the Sat Tracker will sometimes fail to initialize on boot. If this happens, just reboot your Sat Tracker and the VNC Server should initialize and enable VNC access.

I hope you have fun building and using your own Sat Tracker.

Fred, AB1OC

Update on NARS Amateur Radio Expo for Young People

Source: Update on NARS Amateur Radio Expo for Young People

The Nashua Area Radio Society will again be hosting an Amateur Radio Exposition for Young People as part of NEAR-Fest in Deerfield, NH on October 12th and 13th.

You can see more about what we are planning via the link above. Activities will include multiple GOTA Stations, a Kit Build, a Fox Hunt, Morse Code, and other hands-on activities. We will also be operating a Special Event Station as N1T.

NEAR-Fest along with several NARS members are also sponsoring a matching fundraising project as part of this event. Check it out!

Fred, AB1OC

Nashua Area Radio Society Youth Expo at Boxboro

Karen KC1KBW a BGHS Teacher Building a Kit

Karen KC1KBW a BGHS Teacher Building a Kit

The Nashua Area Radio Society put together a successful Amateur Radio Youth Exposition at the New England Amateur Radio Convention at Boxboro this year. Our exposition features over ten displays with hands-on activities…

Source: NARS Youth Expo at Boxboro – Nashua Area Radio Society

Anita AB1QB and I are continuing to work along with the Nashua Area Radio Society to encourage young people to become licensed and join the Amateur Radio Service.

NARS Team at Boxboro

Nashua Area Radio Society Team at Boxboro

The Nashua Area Radio Society recently hosted an Amateur Radio Exposition for Young People at the New England Amateur Radio Convention in Boxboro, MA. Our event featured Remote HF and Satellite GOTA stations, a kit build, and many other hands-on activities which were part of the over ten displays at the event.

You can read more and see photos from our Youth Expo via the link above. We will be holding another Amateur Radio Youth Expo as part of NETT at NEAR-Fest in Deerfield, NH in October. We hope to see some of our local friends there.

Fred, AB1OC

Please Help Us Grow the Amateur Radio Service

Graduates from our Summer Youth Technician License Class

Source: Support the Nashua Area Radio Society on Amazon Smile and GoFundMe

Anita and I have been working to grow the Amateur Radio Service through our work at the Nashua Area Radio Society. The Nashua Area Radio Society is a 501c(3) public charity whose mission is to:

  • Encourage and help people to become licensed and active in the Amateur Radio Service
  • Spark Interest among Young People in STEM Education and Careers through Ham Radio
  • Provide training and mentoring to enable our members to improve their technical and operating skills and to be prepared to assist in times of emergency
  • Sponsor on-air operating activities so that our members may practice and fully develop their operating skills and have fun with Ham Radio!
Students and Teacher Ready To Launch Their High-Altitude Balloon

Students and Teachers Ready To Launch Their High-Altitude Balloon

The Nashua Area Radio Society has created many programs designed to provide STEM learning experiences and training through Amateur Radio. Some of these include:

To carry out our mission, we have formed close relationships with several schools. This helps us develop and deliver effective, high-quality programs that bring learning through Amateur Radio to young people. You can read more about what we’re doing via the link at the top of the page.

We provide many of these services either free of charge or at a very modest cost. We count on the generosity of our members, friends, and the Amateur Radio community to raise funds to support our work.

We hope that our readers will consider supporting our work at the Nashua Area Radio Society by using Amazon Smile and designating us as your favorite charity and/or by making a donation to our current fundraising campaign (click on the badge below).

GoFundMe Badge

Amazon Smile is free and it’s easy to set up and use (click here for setup information).

On behalf of the many young people and others that we help, thank you very much for your interest and support. We will continue to work hard to provide learning opportunities for young people through Amateur Radio and to continue to make the Amateur Radio Service the best it can be to benefit everyone.

Fred, AB1OC

Fall Youth Events at Boxboro and NEAR-Fest

Quite a few Nashua Area Radio Society members have been working on a display to get young people and potential new Hams interested in Amateur Radio. Our display will be part of the New England Amateur Radio Convention in Boxboro, MA on September 8th and 9th. We are also planning a similar display for NEAR-Fest at Deerfield Fairgrounds, NH later in the fall. You can see more about our planned display and the associated hands-on activities via the following link.

Source: Fall Youth Events at Boxboro and NEAR-Fest – Nashua Area Radio Society

I want to share some information about an Amateur Radio event that we will be doing at the Boxboro, MA Ham Radio Convention in September. Our display and hands-on activities provide an introduction to Amateur Radio for young people and include information and a chance to try Amateur Radio activities such as:

You can read more about our plans for the event via the link above.

Morse Trainer Kit

Morse Trainer Kit

We’ve been working with Steve Elliot, K1EL to develop an inexpensive kit building project to include as part of our displays. We will be including a new kit building activity in as part of our display. Builders can purchase the Morse Trainer Kit shown above for $20 and build it at the show. We will provide soldering equipment and kit building mentors to help builders complete their kit. The package includes batteries and a printed manual. We will have these kits available for walk-up purchase at the show on both Saturday and Sunday.

I am also planning to provide forum presentation on the following topics on Saturday at Boxboro:

  • Creating Successful Youth Outreach Projects
  • Portable Satellite Station Design, Operation, and Planning for an upcoming ISS Crew Contact
  • STEM Learning for Young People via High Altitude Balloons Carrying Amateur Radio

You can view the Boxboro Forum schedule here.

I hope to see folks who follow our Blog at the New England at the Boxboro Convention. If you can make it, stop by our display or visit us in the forums and say “hello”.

73,

Fred, AB1OC

PTT Router for Satellite Station 3.0

ARR Satellite Preamp

Advanced Receiver Research Remote Preamp

Our Satellite Station 2.0 antenna system uses a pair of Advanced Receiver Research Remote preamplifiers at the antennas to boost weak signals. These preamps have RF sensing and switching to protect them during transit. While this system works well; we are always concerned about the impact of the RF power affecting the long-term reliability of these devices and the associated radio equipment.

M2 Antenna Systems S3 Sequencers

M2 Antenna Systems S3 Sequencers

Our Satellite Station 2.0 uses a pair of M2 Antenna Systems S3 Sequencers to control the preamps remotely. For U/V and V/U mode satellites, it’s simple to turn off the uplink band preamp to protect it against RF during transmission. The problem with this approach comes when working satellites and the International Space Station in simplex (single band) modes. In these situations, we need a solution that keys the sequencers externally so that the sequencers can properly control the changeover of the preamps from receive to transmit mode before keying our radio (an Icom IC-9100). We also wanted a solution that could also allow the radio to initiate the keying of the sequencers for CW break-in keying and digital modes.

PTT Router

PTT Router

Our solution was to design and build a simple Push-To-Talk (PTT) router. This device allows an external source, such as a footswitch or a trigger switch, to initiate the keying. The design also includes indicators that confirm that the keying sequence has been completed.

PTT Router Schematic Diagram

PTT Router Schematic Diagram

Our first step was to create a simple design that allowed an external switch or the radio to initiate keying. The PTT source switch (S1) selects the keying source and uses the Hsend  (2m key) and Vsend (70cm/1.2 GH key) lines on the Icom IC-9100 accessory jack as either the means to key the radio or the means to detect that the radio has initiated a transmit keying sequence. A second switch (S2) selects which VFO is keyed when the keying source switch (S1) is in External mode. Finally,  indicators for power and keying complete were added.

Rear Panel Connectors

Rear Panel Connectors

A small enclosure was used to house the switches, indicators, and connections to the rest of our Satellite Station. The image above shows the rear-panel connections to external PTT sources, the S3 Sequencers, the IC-9100 Radio, and a 12 Vdc station power source.

PTT Router Internal View

PTT Router Internal View

A pair of terminal strips were mounted inside the enclosure to make connecting all components easier. The wiring around the front and rear panels is pretty dense, so connections were insulated with heat shrink tubing. A small PCB could easily be created to make replicating the prototype easier should we build more copies of the design.

Satellite Station 3.0 Controls

Satellite Station 3.0 Controls

Our new PTT router was easy to integrate into our Satellite Station 3.0 setup. Integration required custom cables to connect our PTT router to the sequencers and the accessory jack of the radio. With the integration completed, we are now able to properly sequence the control of the preamps and the radio in all modes of operation. Here are some more articles which include more about our portable satellite stations –

Fred, AB1OC

An 80m Broadband Matching System

Our Tower with 75m Loop

Our Tower with 75m Loop

We installed a 75m loop for SSB operation on our tower when we built it. The loop is full size and is diamond shaped so that our lower SteppIR DB36 yagi can rotate inside of it. The loop is fed at the bottom corner about 20 ft up from the ground. It works great for SSB operation on 75m, but we have often wished we could use it across the entire 80m Band. This goal led to a project to create a matching system for the antenna. The idea was to use a set of loading coils in series at the feed point to create a good match in all segments of the 80m band.

EZ-NEC Model for 75m Loop

EZ-NEC Model for 75m Loop

The first step in designing our 80m matching system was to build a model of our current loop using EZ-NEC. The model was then used to determine the correct values of a set of series loading inductors to match different segments of the 80m band.

Matching System Design Analysis

Matching System Design Analysis

We also considered how likely different segments of the 80m band were to be used by profiling historical spotting data from DXSummit. All of this analysis led to the creation of a final design which is captured in the spreadsheet shown above. The final design requires our current 75m loop to be shortened to work well at the very top of the 80m Band.

Modeled Loading Coil Inductance Values

Modeled Loading Coil Inductance Values

A set of 5 different inductor pairs can be used in series with the loop’s feed point to create a good match across the 80m band. The modeled values for the series-matching inductors are shown above.

Matching System Modeled SWR

Matching System Modeled SWR

Our microHAM control system can easily implement the switching of the various inductance values based on the frequency that a radio using the antenna is tuned to. The resulting modeled SWR for the final 80m loop and match combination is shown above. The design should achieve an SWR < 1.5:1 across the entire 80m Band except for the very top, where the SWR remains < 2:1. Also, the design optimizes the system’s SWR in the important CW DX, SSB DX, and Digital windows on the 80m band.

Layout of Components in Enclosure

The layout of Components in Enclosure

With the design completed, we chose an enclosure and all components. Here are the details of what we used:

The first step in the construction was to lay out all of the components in the enclosure. Attention was paid to keeping the two series inductors at right angles to avoid coupling and to keep RF connections as short as possible. The relays were arranged to keep the leads connecting to the coils of roughly equal length. Finally, the control circuitry was kept as far removed from the RF leads as possible.

Enclosure Mounting Ears and Clamps

Enclosure Mounting Ears and Clamps

The matching system attaches to a tower leg via saddle clamps. We fabricated a set of mounting ears and spacer blocks to position the enclosure far enough away from the tower so that the antenna connections do not interact with the tower.

80m Matching System Construction

80m Matching System Construction

A summary of the completed matching system construction is shown above. The design uses a set of four double-pole double-throw relays to switch in different coil taps, which selects the loading inductance provided by the matching system.

We did a set of calculations and found that our relays would be subjected to a worst-case peak-peak voltage of about 2.1 KVp-p at the coil tap points.

The relays are arranged such that two sets of contacts have to be traversed to select any given coil tap. The relays we are using have a third pole which we are not using. We disassembled each relay and removed the internal contact wiring for the center pole, which improves both the coil-to-contact voltage rating and the isolation values of the relays.

These steps combine to improve the voltage rating of the system. This is an important design element given that the match will operate at legal limit power.

Completed RF Deck

Completed RF Deck

The completed RF deck and control circuitry is shown above. The enclosure we chose came with a removable plastic plate that made mounting and wiring all of the components simple.

Loading Coil Mounting and Taps

Loading Coil Mounting and Taps

The loading inductors are mounted using nylon hardware with the ends connected to the two antenna terminals on the sides of the enclosure. The coils use movable tap clips to allow us to fine-tune the match once the system is installed with the antenna on our tower. The initial clip locations are set to create the inductance values modeled during the design phase.

Relay Control Circuit Connections

Relay Control Circuit Connections

The relay control leads use twisted pair wiring to minimize RF pickup. The control leads are routed away from the RF connections to minimize potential RF coupling.

Relay Control Circuit Details

Relay Control Circuit Details

The control circuits for each relay use a combination of a Diode, a Varistor (MOV), and a filter capacitor in parallel to avoid relay coil switching interference and to suppress control line noise.

1.5 to 1 Matching Balun

1.5 to 1 Matching Balun

The matching system is designed to operate at 75 ohms which is close to the resonant impedance of our 75m loop. The current antenna uses a 1.5:1 Balun to match the loop to our 50-ohm coax feedline. We disassembled an identical matching balun (actually a 75-ohm balun plus a 1.5:1 unun) and used it without its enclosure to create a final 50-ohm match.

MicroHAM Setup to Control 80m Matching System

MicroHAM Setup to Control 80m Matching System

The final step in constructing our matching system was to program our microHAM antenna switching system to properly configure the relays in our matching system. This was quite simple to do using microHAM’s frequency-dependent antenna control capabilities. The microHAM system automatically operates the appropriate relays to create the best possible match as the radio which is using the matching system is tuned across the 80m band.

Unfortunately, we are in the middle of winter here in New England, so I will have to wait for warmer weather to install our new matching system on the tower and make the final adjustments. I am planning another article here when the final integration steps are done to cover the performance of the completed project.

Fred, AB1OC

DX Alarm Clock Part 2 – Hardware

The DX Alarm Clock

The Raspberry Pi-based DX Alarm Clock

I recently wrote a blog article about the DX Alarm Clock software – here is Part 2 of the Series on how I built the hardware for the DX Alarm Clock.

DX Alarm Clock Hardware Components

The DX Alarm Clock is based on a Raspberry Pi 3 computer and an Adafruit Pi-TFT Touch Screen Display.  The list of components, along with links, is below.  Since I built the initial DX Alarm Clock almost a year ago and technology is always advancing, some of the parts are no longer available or have better replacements available.  I’ll provide information on what I used and a recommended replacement.  Approximate prices are included.

 

Rapberry Pi 3

Raspberry Pi 3

Motherboard: Raspberry Pi 3 ($35) – includes a 1.2 GHz 64-bit quad-core ARM CPU, Built-in WiFi, Ethernet, 4 USB Ports, an HDMI port and audio port (3.5″), and Bluetooth.

Also, you will need a power adapter  ($10) and a Class 10 Micro SD card ($15) for the Raspberry Pi.  Ours is a SanDisk Ultra 64GB Micro SD Card.

Pi-TFT Touch Screen Display

Pi-TFT Touch Screen Display

Display: Adafruit Pi-TFT 2.8″ Display with Capacitive Touch Screen ($45).  A slightly larger, 3.5″ display is now available.

PiBow Case

PiBow Case for the Pi and Touch Screen Display

Case: Pimoroni PiBow Case for Raspberry Pi and Pi-TFT Display($20)

Kinivo Speaker

Kinivo Portable Speaker

Portable Speaker:  Any small portable/rechargeable speaker will do.  Mine is a Kinivo, but it is no longer available.  Any small speaker will do as long as it is Bluetooth or has a 3.5″ stereo connector.

Raspberry Pi Development Environment

Raspberry Pi Development Environment

Pi Development Environment

After constructing the Raspberry Pi case and TFT Display, the next step was to connect it to a monitor via the HDMI port, a mouse via one of the USB ports, and a Bluetooth keyboard.   Then I loaded the Raspbian Operating System onto the Pi via the micro SD card.  I first copied the OS to the Micro SD card using a PC or Mac and then inserted the card into the Raspberry Pi and booted from it.  You can find a good tutorial on how to do this at https://www.raspberrypi.org/learning/software-guide/quickstart/.

Once Raspbian is installed, you will have a windows GUI (Graphical User Interface) environment with a web browser and several additional applications included.

This gave me a development environment that I could use to build and test the DX Alarm Clock software.  I used Python language to develop the software.  I used the Python IDLE development environment, which is included in the Raspbian OS.

Interested in Raspberry Pi Amateur Radio Projects?  See the article on a Raspberry Pi Satellite Rotator Interface.

Anita, AB1QB