PTT Router for Satellite Station 3.0

ARR Satellite Preamp

Advanced Receiver Research Remote Preamp

Our Satellite Station 2.0 antenna system uses a pair of Advanced Receiver Research Remote preamplifiers at the antennas to boost weak signals. These preamps have RF sensing and switching to protect them during transit. While this system works well; we are always concerned about the impact of the RF power affecting the long-term reliability of these devices and the associated radio equipment.

M2 Antenna Systems S3 Sequencers

M2 Antenna Systems S3 Sequencers

Our Satellite Station 2.0 uses a pair of M2 Antenna Systems S3 Sequencers to control the preamps remotely. For U/V and V/U mode satellites, it’s a simple matter to turn off the uplink band preamp to protect it against RF during transmit. The problem with this approach comes when working satellites and the International Space Station in simplex (single band) modes. In these situations, we need a solution which keys the sequencers externally so that the sequencers can properly control the changeover of the preamps from receive to transmit mode before keying our radio (an Icom IC-9100). We also wanted a solution which could also allow the radio initiate the keying of the sequencers for CW break-in keying and digital modes.

PTT Router

PTT Router

Our solution was to design and build a simple Push-To-Talk (PTT) router. This device allows an external source such as a footswitch or a trigger switch to initiate the keying. The design also includes indicators which confirm that the keying sequence has completed.

PTT Router Schematic Diagram

PTT Router Schematic Diagram

Our first step was to create a simple design which allowed for either an external switch or the radio to initiate keying. The PTT source switch (S1) selects the keying source and uses the Hsend  (2m key) and Vsend (70cm/1.2 GH key) lines on the Icom IC-9100 accessory jack as either the means to key the radio or the means to detect that the radio has initiated a transmit keying sequence. A second switch (S2) selects which VFO is keyed when the keying source switch (S1) is in External mode. Finally,  indicators for power and keying complete were added.

Rear Panel Connectors

Rear Panel Connectors

A small enclosure was used to house the switches, indicators, and the connections to the rest of our Satellite Station. The image above shows the rear-panel connections to external PTT sources, the S3 Sequencers, the IC-9100 Radio, and a 12 Vdc station power source.

PTT Router Internal View

PTT Router Internal View

A pair of terminal strips were mounted inside the enclosure to make connecting all of the components easier. The wiring is pretty dense around the front and rear panels so connections were insulated with heat shrink tubing. A small PCB could easily be created to make replicating the prototype easier should we decide to build more copies of the design.

Satellite Station 3.0 Controls

Satellite Station 3.0 Controls

Our new PTT router was easy to integrate into our Satellite Station 3.0 setup. Integration required some custom cables to be made to connect our PTT router to the sequencers and to the accessory jack of the radio. With the integration completed, we are now able to properly sequence the control of the preamps and the radio in all modes of operation. Here are some more articles which include more about our portable satellite stations –

Fred (AB1OC)

Leave a Reply