EME Station 2.0 Part 8 – Elevation Rotator Assembly and Sub-System Test

Elevation Rotator and MAP65 EME Preamp System Test

The next major component in our new EME station is the assembly of the Elevation Rotator. This step also involves pre-assembly and testing of the MAP65 Pre-amp Housing, Antenna Power Dividers, Transmit/Receive Sequencer, and the Rotator Controller. Here are the components involved in this part of our project:

We choose the MT-3000A Elevation Rotator for its heavy-duty construction. This will be important to handle the weight of our EME antenna array as well as the winter conditions that we encounter here in New England.

Elevation Rotator Assembly

MT-3000A Elevation Rotator Parts

MT-3000A Elevation Rotator Parts

The first step was to inventory all of the parts for the MT-3000A Elevation Rotator and carefully read the MT-3000A manual from M2 Antennas.

Assembled MT-3000A Elevation Rotator

Assembled MT-3000A Elevation Rotator

Assembly of the MT-3000A is pretty straight forward. It uses a chain-drive system to produce a very strong, high-torque elevation rotator system. It’s important to fill the gear-box with the supplied gear oil and to lube the chain with the proper lubricant prior to testing and installing the rotator. Spray style chain lubricants for motorcycle chains work well in this application.

Rotator Controller Integration and Testing

Green Heron RT-21 Az-El Rotator Controller

Green Heron RT-21 Az-El Rotator Controller

The next step was to make up a rotator and connect the MT-3000A to our Green Heron RT-21 Az/El Rotator Controller for a test. The RT-21 Az/El is a very flexible controller that is capable of controlling almost any popular antenna rotator. We’ve already tested this unit with the M2 Antennas OR2800G2 Azimuth Rotator that is installed on our EME tower.

RT-21 Configuration of the MT-3000A Elevation Rotator

RT-21 Configuration of the MT-3000A Elevation Rotator

The MT-3000A is a pulse-counter style rotator with 0.1-degree positioning resolution. It required a custom setup in the Green Heron RT-21 Az/El which was easily accomplished with Green Heron Engineering’s setup utility. One must determine the correct Divide Ratio setting by experimentation. When the correct value is found, a rotation of 90 degrees on the controller will result in exactly 90 degrees of actual movement by the MT-3000A. This calibration was much easier to do with the MT-3000A in our shop than it would have been once the unit was installed on our tower. We also set up the RT-21 Az/El Controller to allow for 5 degrees of rotation beyond the 0 and 90-degree points.

After some testing, I decided to use the 42Vdc tap setting in the RT-21 Elevation Controller with our MT-3000A. The specifications for the MT-3000A allow for up to 42 Vdc to be used to run its motor. To be safe, we set the Max Speed setting in the RT-21 Az/El to “8” which resulted in a maximum of 40 Vdc measured with a voltmeter at the output of the controller.

Assembly and Integration of MAP65 Housing and Cross Boom

Elevation Rotator and MAP65 Preamp Housing Assembly

Elevation Rotator and MAP65 Preamp Housing Assembly

The next step was to install the H-frame Main Boom center section and Truss Support Tubes in the MT-3000A. The MAP65 EME Preamp Housing is mounted on the horizontal Truss Support Tube as shown above.

MAP65 EME Preamp System Housing

MAP65 EME Preamp System Housing

A control cable for the MAP65 EME Preamp Housing was made up and connected to the terminal strip on the housing.

EME Sequencer Testing

S2 Sequencer

S2 Sequencer

The S2 EME Sequencer from M2 Antennas is designed to control the MAP65 Housing but its internal jumpers must be properly set to do this. We spent some time with the manual for the S2 Sequencer and for the MAP65 Housing carefully setting the S2 Sequencer’s jumpers and verifying proper voltages at both the output of the S2 Sequencer and the terminal strip in the MAP65 housing with a voltmeter. The manuals for the S2 EME Sequencer and the MAP65 EME Preamp Housing were clear on these steps.

Mounting Power Dividers

Power Divider Mounting Bracket

Power Divider Mounting Bracket

The next step in this part of our project was to mount the M2 Antennas 4-Port Power Dividers that are used to connect the MAP65 Pre-Amp housing to the four 2MXP28 Antennas. Two power dividers are required as each antenna has a separate feed point connection for their horizontal and vertical polarities. We made up some custom mounting brackets for the power dividers from 1-1/4″ aluminum angle material.

MAP65 EME Preamp Housing Connections

MAP65 EME Preamp Housing Connections

The MAP65 Preamp Housing connects to the outputs of the two Power Dividers that feed the H-polarity and V-polarity of the antenna array. The outputs from the MAP65 EME Housing connect to the H-polarity and V-polarity receive coax cables and the Transmit Hardline Coax Cable that runs from the tower to our shack.

Coax Interconnect Cables

Power Divider and Feedline Jumper Coax Cables

Power Divider and Feedline Jumper Coax Cables

The final step was to make up LMR-400 coax cables to connect the MAP65 Preamp Housing to the Power Dividers. We used right-angle male N connectors to make the connections to the 4-Port power drivers to avoid sharp bends in the cables.

We also made up three additional LMR-400uF coax cables to connect the MAP65 Preamp Housing to the coax Tx and Rx feedlines that are installed on our tower. It’s important to keep the H-Pol and V-Pol cables as close to identical in length as possible to minimize and phase differences between the associated receive feedline systems.

Next Steps

The next step in our project will be the final assembly and preparation of the H-frame which will be used to mount our four 2MXP28 Antennas. You can read more about our EME station project via the links that follow:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred – AB1OC

Tech Night – VHF+ Weak Signal Stations Part 1 (Intro and 6 Meters)

Tech Night - VHF+ Weak Signal Stations Part 1 - Overview and 6 Meters

Tech Night – VHF+ Weak Signal Stations Part 1 – Overview and 6 Meters

We recently did a Tech Night on building and operating VHF+ stations as part of the Nashua Area Radio Society’s educational program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to get started and build their own VHF+ Weak Signal Station.

There is a lot to this topic so we’re going to cover it with two Tech Night presentations. The first one in the series is included here and it provides an Introduction to the VHF+ topic along with details on building and operating a station for the 6 Meter Band.

July 2020 Tech Night Video – VHF+ Weak Signal Stations Part 1 – Introduction and 6 Meters

You can view this Tech Night session via the video above. Here’s a link to the presentation that goes with the video. You can learn more about the Nashua Area Radio Society’s Tech Night program here.

We have built a number of stations and antennas for the VHF+ Bands (6 Meters and above). Here are some links to articles about those projects and our operations on the VHF+ Bands here on our Blog:

Fred, AB1OC

Tech Night July 14 – Building and Operating a VHF+ Station

Completed Antenna Stack On New Tower

6m Yagi and 2m/70cm/23cm Satellite Antennas On A Tower

We will be hosting a Tech Night about Building and Operating a VHF+ Weak-Signal Station tonight, July 14th at 7 pm Eastern Time. The live, interactive video of our tech Night will be shared via a Zoom conference and all of our readers are welcome to join. I plan to cover the following topics during our session this evening:

  • Why do weak-signal work on 6 meters and above?
  • What can you work and what modes are used on these bands
  • How does propagation work at 50 Mhz and above and how can you measure it?
  • How does one operate using SSB, CW, and digital modes on these bands?
  • What equipment is needed and what are some possible ways that you can put together a VHF+ station?
  • Some demonstration of actual contacts

In addition to an overview of how to get on all of the bands above 50 MHz, we will focus on the 6 Meter (Magic) band. The session will include demonstrations of FT8 and Meteor Scatter contacts on 6 m. I will also briefly describe the 6 m station here at AB1OC-AB1QB and show how we use it to make contacts. A second Tech Night will cover stations and weak-signal operating on 2 m and above.

The Zoom information for our Tech Night Session follows. We suggest that you join early so that you have a chance to make sure that your computer, speakers, microphone, and camera are working.

July 14th, 7 pm Eastern – Nashua Area Radio Society Tech Night. Fred, AB1OC Setting up a VHF+ Station. Here’s an opportunity to learn how to add 6 m and above weak-signal modes to your station. Join Our Zoom Meeting

We hope to see many of our readers this evening!

Fred, AB1OC

Getting Started With Amateur Satellites (and Progressing to Linear Birds)

Get Started with Amateur Satellites

Get Started with Amateur Satellites

We get quite a few requests from folks to explain how to get started with Amateur Radio Satellites. Requests for information on how to build a computer-controlled ground station for Linear Satellites are also pretty common. I recently got such a request from our CWA class so I decided to put together a session on this topic.

We covered a number of topics and demonstrations during the session including:

  • How to put together a simple station and work FM EasySats with HTs and a handheld antenna
  • A recorded demonstration of some contacts using FM EasySats
  • How-to build a computer-controlled station and work Linear Transponder Satellites
  • Fixed and Portable Satellite Station Antenna options
  • A recorded demonstration of some contacts using Linear Satellites
  • How-to work digital (APRS digipeater) contacts
  • How-to receive SSTV Transmissions from the ISS

About 30 folks attended this session and there was some good Q&A throughout.

Getting Started With Amateur Satellites

The presentation was recorded and can be viewed above. Here’s a link to the associated Powerpoint Presentation.

There are lots of articles about building and operating Amateur Satellite Stations here on our blog. The following are links to several articles and series on this topic:

I hope that you find this information useful for your Amateur Satellite projects!

Fred, AB1OC

Tech Night – Getting Started In EME Communications

Tech Night – Getting Started in EME (Click to View The Presentation)

We recently did a Tech Night Program as part of the Nashua Area Radio Society’s Tech Night program. I wanted to share the presentation and video from this Tech Night so that our readers might learn a little more about how to get started in EME or Moonbounce Communications.

April 2020 Tech Night Video – Getting Started in EME Communications

You can view the Tech Night presentation by clicking on the video above. Here’s a link to the presentation that goes with the video. You can learn more about the Nashua Area Radio Society’s Tech Night program here.

The second Tech Night in the EME Series was about Building and Operating an EME Station. You can view that Tech Night here.

We are in the process of upgrading our EME station to include adaptive polarity. you can read more about that project here.

Fred, AB1OC

EME Station 2.0 Part 6 – Tower Grounding System

Tower Ground System

Tower Grounding System

Now that spring is here, we’ve continued work on our EME station project. The most recent project was to build the tower grounding system for our new EME tower. The proper way to ground a tower is shown above. Each leg of the tower is connected to an 8′ ground rod via a heavy gauge ground cable. The cable is attached to the tower leg using stainless steel clamps meant for this purpose. The three ground rods associated with the tower legs are then bonded together using a heavy copper ground cable ring.

Ground Cable CAD Weld

Ground Cable CAD Weld

The ground cables are welded to the top of the ground rods using CAD weld on-shots. This creates a strong connection that will not corrode or fail. It is important that the ground rods be free of dirt, corrosion, oxidation, and burrs before performing the CAD welding. We used a combination of 3-wire and 4-wire one-shot CAD welds to build our ground system and connect it to the bonding system running from our tower to the entry to our shack.

Main Grounding System Bonding

Main Grounding System Bonding

The final step was to connect the bonding run from the tower to the perimeter grounding system around our house. This completed the tower grounding system and enabled us to complete our final permit inspection courtesy of our local building inspector.

Finished Tower Base

Finished Tower Base

With all of this work done and the inspection complete, we added a mulch bed around our new tower to make this area of our lawn easy to maintain.

The next step in our project is to begin building the antennas that will go on our EME tower. You can read more about our EME station project via the links that follow:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC

EME Station 2.0 Part 5 – Control Cables and Rotator Controller

Control Cable Junction Box on EME Tower

Control Cable Junction Box on EME Tower

Snow is coming to New England this weekend so we wanted to get the control cables run to our new EME Tower before the ground is covered with snow. The project involved installing a Utility Enclosure on our tower and running three control cables to our shack for the following devices:

Az-El Rotor and Preamp Switching Control Connections

Az-El Rotator and Preamp Switching Control Connections

We began by install some barrier strips and a copper ground strap in the Utility Enclosure. The copper strap provides a good ground connection to the tower and associated grounding system. The enclosure is clamped to the tower using two stainless steel clamps.

We ran three new control cables through the conduits that we installed between the tower and our shack and terminated them in the utility enclosure. We only needed 6 leads for control of the planned MAP65 Switching and Preamp System which will go on our tower later so we doubled up some of the higher current connections using two wires in the 8-conductor cable.

Green Heron RT-21 Az-El Rotator Controller

Green Heron RT-21 Az-El Rotator Controller

The final step was to hook up our rotator cables to a Green Heron RT-21 Az/El Rotator Controller in our shack.  We do not yet have our elevation rotator so we tested the M2 Orion 2800 Azimuth Rotator that is installed in our tower. The azimuth rotator is configured so that the rotator’s dead spot faces north. This is a good configuration of our planned EME operation.

With all of our control cabling in place, we are ready to begin preparing our Antennas, Elevation Rotator, H-Frame, and MAP65 components to go on our EME Tower. We’re hoping that the weather will cooperate and enable us to get these steps completed during this winter.

Here are some links to other articles in our series about our EME Station 2.0 project:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC

Winter Field Day VHF+ Preparations

Jamey AC1DC with Completed WFD VHF+ Mast

Jamey AC1DC with Completed WFD VHF+ Mast

We are continuing to make progress on our preparation for VHF+ Operations at Winter Field Day (WFD) 2020. We had a lot of fun on the VHF+ bands at WFD 2019 and we are planning to add some more bands for our operation this year. We’ve assembled a portable mast system to put us on 3 new bands…

Source: Winter Field Day VHF+ Preparations – Nashua Area Radio Society

We’ve been busy with preparation for Winter Field Day 2020. My part of this project is to increase our participation in operations on the VHF+ bands (6m and above). We are accomplishing this with a 30 ft push-up mast, some new antennas, and using Transverters for the 1.25m and 33cm bands. You can read more about our preparations and the equipment that we will be using on the VHF+ bands via the link above.

Fred, AB1OC

EME Station 2.0 Part 4 – New EME Tower Is Up!

Three Tower Antenna Farm

New EME Tower in Our Antenna Farm

Our goal for this phase of our EME Station Project is to get our new tower up, install the Azimuth Rotator and Mast, and run the hardline and coax cables for our antennas from the shack to our new tower. Our EME tower is constructed using Rohn 55G tower sections. It will be 26 ft tall and will have approximately 18″ of our 3″ mast protruding above the tower. The tower is a free-standing/guyed hybrid design with the first section being cemented into the ground.

EME Tower

FInished Tower Base

The base section and the three guy anchor blocks were completed a little while back. The holes were backfilled and we’ve given the cement a couple of weeks to cure.

First Tower Section Installed Using a Gin Pole

First Tower Section Installed Using a Gin Pole

Matt, KC1XX, and Andrew of XX Towers began by installing a winch and a gin pole on the base section of the tower. They used the Gin Pole to hoist the second tower section into place and secure it. They also attached the top plate to the third tower section in preparation for installing it along with our mast.

Mast and Top Tower Section Going Up

Mast and Top Tower Section Going Up

It is always a challenge to install a mast inside a new tower. The mast we are using is a heavy, 22 ft 4130 chrome molly steel mast that weighs over 250 lbs. Getting the mast inside the tower was quite a feat! Matt and Andrew rigged the top tower section and the mast together and pulled both up together on the Gin Pole. Next, one leg of the top tower section was attached and a second pully was used to pull the mast up through the top tower section until it could be placed inside the tower. The last step was to raise the top tower section a second time using the Gin Pole to seat it on top of the rest of the tower. Finally, the mast was lowered inside the tower to the base and the top tower section was bolted on to complete the tower.

Upper Guy Anchor Bracket on Tower

Upper Guy Anchor Bracket on Tower

The next step involved attaching the upper guy anchor bracket to the top section of the tower and rigging the guy anchor cables. We decided to use Phillystran Guy Cable to avoid interactions with our antennas.

Guy Anchor Cable

Guy Anchor Cable

The completed cables are tensioned using turnbuckles. We adjusted the cables to plumb the tower and then safety-wired the turnbuckles so they will not come loose.

Azimuth Rototor in Tower

Azimuth Rotator in Tower

The next step was to install an M2 Antenna Systems Orion 2800G2 Azimuth Rotator in our tower. The use of the 22 ft mast allowed us to place the rotator about 5 ft above the ground where we can easily service it in the future. The long mast also acts as a torque shock absorber when the rotator starts or stops moving suddenly. With the rotator in place, we attached the mast and clamped it at the rotator and thrust bearing at the top of the tower.

Tower Base, Coax Feedlines, and Guy Anchors

Tower Base, Coax Feedlines, and Guy Anchors

The last step in our project was to install our coax cables and hardlines on the tower and run them through a 4″ underground conduit to our shack. We pre-made the two LMR-600 coax cables for the receive side of our EME Antenna System previously. We cut a section of LDF5-50A 7/8″ Hardline to approximately the same length as the LMR-600 coax cables.

Pushing Coax Cables and Hardline Through the Condui

Pushing Coax Cables and Hardline Through the Conduit

We used a cutoff plastic bottle to protect the ends of the coax cables and hardline as we pushed them through approximately 50 ft of buried 4″ conduit. The conduits were constructed to create a gradual turn into and out of the ground and the cables went into the conduit smoothly.

Coax Cables Exiting the Conduit Near Our Shack

Coax Cables Exiting the Conduit Near Our Shack

With the cables in place, we installed N-female connectors on each end of the 7/8″ hardline. We used rubber reducers to make it easier to deter water from entering the conduits where the cables exit.

Coax Cable Ground Block Connections

Coax Cable Ground Block Connections

We expanded out main shack entry ground block using an 18 position tinned cover ground bar from Storm Copper to make room for additional static arrestors for our EME Antenna System. The LMR-600 receive-side coax cables and the 7/8″ hardline connection for the transmit-side of our EME antennas terminate on N-connector Static Arrestors from Alpha Delta.

Completed EME Tower

Completed EME Tower

Our new EME tower is up and ready to accept the Elevation Rotator, H-Frame, and Antennas from M2 Antenna Systems when they arrive. We plan to complete the grounding system and get the Azimuth Rotator hooked up and tested with our Green Heron Engineering RT-21 Az/El Rotator Controller in the near future.

Here are some links to other articles in our series about our EME Station 2.0 project:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC

EME Station 2.0 Part 1 – Goals and Station Design

The Moon

The Moon

EME or Earth-Moon-Earth contacts involve bouncing signals off the moon to make contacts. EME provides a means to make DX contacts using the VHF and higher bands. There are also some EME Contests including the ARRL EME Contest that provides opportunities to make EME contacts.

We made some 2m EME contacts a while ago using the 2m antenna on our tower at about 112′. This experience created interest on my part in building a more capable EME station at some point in time. Well, the time has finally arrived.

EME Propagation

Understanding EME Propagation is a project in of itself. The following is a brief overview of some of the (mostly negative) effects involved.

The path loss for EME contacts varies by Band and is in excess of 250 dB on the 2m band. There are some significant “propagation” effects that further impair our ability to make EME contacts. These include:

  • Faraday Rotation – an effect that results in the polarity of signals being rotated by differing amounts as they pass through the ionosphere on their way to the moon and back
  • Libration Fading – fading caused by the addition of the multiple wavefronts that are reflected by the uneven surface of the moon
  • Path loss variations as the earth-to-moon distance vary – the moon’s orbit around the earth is somewhat elliptical in shape resulting in a distance variation of approximately 50,000 km during the moon’s monthly orbital cycle. This equates to about a 2 dB variation in total path loss. An average figure for the path loss for 2m EME might be in the range of 252 dB.
  • Transit Delays – at the speed of light, it takes between 2.4 and 2.7 seconds for our signals to travel from earth to the moon and back.
  • Noise – the signals returning from the moon are extremely weak and must compete with natural (and man-made) noise sources. The sun and the noise from other stars in our galaxy are significant factors for EME communications on the 2m band.
  • Doppler shifts – as the earth rotates, the total length of the path to the moon and back is constantly changing and this results in some frequency shift due to doppler effects. Doppler shift changes fairly slowly compared to the time it takes to complete a 2m EME QSO so it is not a major factor for the 2m band.
  • Moon’s size vs. Antenna Aperture – the moon is a small target (about 0.5 degrees) compared to the radiation pattern of most 2m antenna systems. This means that most of our transmitted power passes by the moon and continues into space.

Taking the moon’s size, average orbital distance, and average Libration Fading level into account, one can expect only about 6.5 % of the power that is directed toward the moon to be reflected back toward earth.

EME “Good Guys”

One might look at the challenges associated with making EME contacts and say “why bother”? EME contacts present one of the most challenging and technical forms of Amateur Radio communications. It is this challenge that fascinates most EME’ers including this one. Fortunately, there are some “good-guy” effects that help to put EME communications within reach of most Amateur Radio stations. These include:

  • WSJT-X and the JT65 Digital Protocol – In the early days of EME communications, one had to rely on CW mode to make contacts. All of the impairments outlined above made these contacts very challenging and the antennas and power levels required put EME communications out of the reach of most Amateurs. Along came Joe Taylor’s digital JT65 protocol which changed all of this. It is now possible to make 2m EME contacts with a single (albeit large) 2m yagi and 200W or so of input power. As a result of these innovations, many more Amateurs have built EME stations and are active on the 2m (and other) bands. Many DXpeditions are now also including EME communications in their operations.
  • Ground Gain Effects – a horizontally polarized antenna system will experience approximately 6 dB of additional gain when the antenna(s) are pointed approximately parallel to the ground. Ground gain effects made it possible for us to use our single 2m antenna to make our first 2m EME contacts.
  • MAP65 Adaptive Polarization – Fading resulting from polarity changes due to Faraday Rotation can cause a received signal to fade to nothing over the period of time needed to complete a 2m EME contact. These polarity “lock-out” effects can make contacts take a significant amount of time to complete. Fortunately, a version of the software which implements the JT65 protocol called MAP65 has been created that will automatically detect and adapt to the actual polarity of signals returning from the moon. More on how this is achieved follows below. MAP65 is most useful for making “random” EME contacts during contests. In these situations, a variety of signals will be present in a given band with different polarities, and the MAP65 software can adapt to each one’s polarity and decode as many simultaneous signals as possible.
  • Commercially Available Amplifiers for the VHF+ Bands – Modern, solid-state amplifiers have become much mor available for the 2m band (and other VHF and higher bands). This has made single-antenna EME on 2m and above much more practical for smaller stations with a single antenna or a small antenna array.

Our 2m EME Goals and Station Design

We began this project by making a list of goals for our 2m EME Station 2.0. Here is that list:

  • Operation using JT65 and QRA64 digital protocols and possibly CW on the 2m EME band
  • 80th percentile or better station (i.e. we want to be able to work 80% of the JT65 capable 2m EME stations out there)
  • Operation in EME contests and EME DX’ing; earn a 2m EME DXCC

We have come up with the following station design parameters to meet these goals:

  • An array of four cross-polarized antennas with an aggregate gain of approximately 23 dBi
  • A new 26′ Rohn 55G tower to support the antennas
  • A computer-controlled Azimuth/Elevation rotator system to allow us to track the moon
  • A legal limit input power of 1500W
  • A MAP65-capable SDR-based receive system that can support adaptive polarity
  • Low-noise, high-gain preamplifiers located at the antennas
  • A low-loss feedline system for both the transmit and receive sides of the system
  • Use of both the MAP65 and standard versions for WSJT-X for digital operations
  • Use of Linrad as a front-end to the receive side of our system
  • An Icom IC-9700 Transceiver and a W6PQL Legal Limit (1500w) 2m Power Amplifier for transmitting

Antennas

WA1NZP Antenna System (4 M2 XP32 X-Polarity Antenna Array)

WA1NPZ Antenna System (4 M2 Antennas XP32 X-Polarity Antenna Array)

It takes some fairly large antennas to create an 80th percentile EME station. We are planning a setup similar to Bob, WA1NPZ’s system shown above. We are going to put up a 26′ Rohn 55G tower for our EME antenna system. We will be using four M2 Antenna System XP28 Antennas mounted on an H-frame to create a 15′ x 15′ square array.

The combined gain of the system will be approximately 23 dBi with a 3 dB beamwidth of 12.5°. The XP28 antennas are designed for stacking and have good Gain/Temperature (G/T) characteristics. G/T is a measure of the gain and noise performance of an antenna system. See VE7BQH’s tables for some interesting data on G/T for many commercially available EME and VHF+ antennas.

The antenna system will have separate feeds for the antenna array’s Horizontal (H) and Vertical (V) planes. The Horizontal elements will be oriented parallel to the ground to maximize ground gain when the H plane is used for transmitting (and receive). A pair of 4-port power combiners will be used to combine the H and V polarities of the four antennas into a pair of H and V feedline connections.

Plans call for a combination of the M2 Orion 2800G2 and MT3000A rotators to be used along with a Green Heron RT-21 Az/El Rotator Controller to provide computer-controlled tracking of the moon. A 22′ section of 3″ Chrome Molly mast material will allow the azimuth rotator to be located near the base of the tower where it can be easily serviced.

Tower Mounted Preamps and Polarity Switching

MAP65 Switching and Preamp Housing

MAP65 Switching and Preamp Housing

M2 Antenna Systems will be supplying a MAP65 Switching and Preamp System that will mount on the tower near the antennas. The MAP65 Housing provides switching and separate receive preamplifiers and feedlines for the H and V polarities of the antennas. Separate H and V receive coax connections bring the Horizontal and Vertical elements of the antennas back to the shack. A third coax connection is provided for Transmit. The transmit feedline can be routed to either the H or the V antenna polarity to help minimize Faraday Rotation related fading at the other end of the contact.

S2 Sequencer

S2 Sequencer

An M2 Antennas S2 Sequencer will provide Tx/Rx sequencing and H/V transmit polarity selection via the MAP65 Switching and Preamp System on the tower. The sequencer is essential to provide safe changeovers between receive and transmit and to protect the preamplifiers and the power amplifier during high power operation.

Feedline plans call for a run of 7/8″ Hardline Coax for transmit and a pair of LMR-400uF Coax cables for the H and V receive polarities.

MAP65 Capable Receive Chain

LinRF IQ+ Block Diagram

LinRF IQ+ Block Diagram

The signals returning from the moon in an EME system are very, very weak. Because of this, Noise and Dynamic Range performance are critical factors in an EME receive system. In addition, we will need a pair of high-performance, phase-coherent receivers to enable Adaptive Polarization via MAP65.

LinkRF IQ+ Dual Polarity Receive System

LinkRF IQ+ Dual Polarity Receive System

We are planning to use a LinkRF IQ+ Dual Channel Receive Converter in our EME system. The Link RF IQ+ features excellent noise and dynamic range performance and its phase-coherent design will support adaptive polarity via MAP65. The IQ+ separately converts both the H and V polarities of the antennas into two separate pairs of I/Q streams.

UADC4 High-Performance A/D Converter

UADC4 High-Performance 4-Channel A/D Converter

The four channels (two I/Q streams) from the LinkRF IQ+ must be digitized and fed to a Windows PC for decoding. The conventional way to do this is with a 4-channel, 24-bit soundcard. The available computer soundcards add a good bit of noise and therefore limit the overall dynamic range of an EME system. Alex, HB9DRI at LinkRF has come up with the UADC4 – a high-performance 4-channel ADC that is specially designed for software-defined radio. The UADC4 design is based on CERO- IF conversion and is optimized for EME use. The UADC4 should add about 10 – 15 dB of dynamic range improvement over a typical 24-bit PC Soundcard. Alex is currently taking pre-orders for the next run for UADC4 devices. You can contact him at info@linkrf.ch for more information.

Software

JT65 Software Block Diagram

JT65B Software Block Diagram

Our plans for JT65 software and related components for our EME station are shown above. We are planning on running a combination of Linrad and WSJT software on the same Windows PC to handle JT65B QSOs. There are two configurations that are applicable to our plans:

We are also planning to develop a simple Windows application that will read the Moon Tracking data that is generated by WSJT MAP65 and WSJT-X and use it to control the rotator system associated with our EME antennas. More on this to come in a future article.

Transmit System

2m Amplifier And Sequencers

M2 2M-1KW 2m Amplifier

A combination of an Icom IC-9700 Transceiver and an M2 2M-1K2 2m Amplifier will be used for the Transmit side of our system. The M2 2M-1K2 Amplifier can generate 900 – 1000W when transmitting in JT65B mode.

Well, that about covers it as far as our 2m EME goals and station design go. The plan is to break ground for the new EME tower later this week. We’ll continue to post more articles in this series as our project proceeds.

Here are some links to other articles in our series about our EME Station 2.0 project:

If you’d like to learn more about How To Get Started in EME, check out the Nashua Area Radio Society Teach Night on this topic. You can find the EME Tech Night here.

Fred, AB1OC